@misc{PourteauSudoCandanetal.2013, author = {Pourteau, Amaury and Sudo, Masafumi and Candan, Osman and Lanari, P. and Vidal, O. and Oberh{\"a}nsli, Roland}, title = {Neotethys closure history of Anatolia - insights from Ar-40-Ar-39 geochronology and P-T estimation in high-pressure metasedimentary rocks}, series = {Journal of metamorphic geology}, volume = {31}, journal = {Journal of metamorphic geology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0263-4929}, doi = {10.1111/jmg.12034}, pages = {585 -- 606}, year = {2013}, abstract = {The multiple high-pressure (HP), low-temperature (LT) metamorphic units of Western and Central Anatolia offer a great opportunity to investigate the subduction-and continental accretion-related evolution of the eastern limb of the long-lived Aegean subduction system. Recent reports of the HP-LT index mineral Fe-Mg-carpholite in three metasedimentary units of the Gondwana-derived Anatolide-Tauride continental block (namely the Afyon Zone, the Oren Unit and the southern Menderes Massif) suggest a more complicated scenario than the single-continental accretion model generally put forward in previous studies. This study presents the first isotopic dates (white mica Ar-40-Ar-39 geochronology), and where possible are combined with P-T estimates (chlorite thermometry, phengite barometry, multi-equilibrium thermobarometry), on carpholite-bearing rocks from these three HP-LT metasedimentary units. It is shown that, in the Afyon Zone, carpholite-bearing assemblages were retrogressed through greenschist-facies conditions at c. 67-62 Ma. Early retrograde stages in the Oren Unit are dated to 63-59 Ma. In the Kurudere-Nebiler Unit (HP Mesozoic cover of the southern Menderes Massif), HP retrograde stages are dated to c. 45 Ma, and post-collisional cooling to c. 26 Ma. These new results support that the Oren Unit represents the westernmost continuation of the Afyon Zone, whereas the Kurudere-Nebiler Unit correlates with the Cycladic Blueschist Unit of the Aegean Domain. In Western Anatolia, three successive HP-LT metamorphic belts thus formed: the northernmost Tavsanli Zone (c. 88-82 Ma), the Oren-Afyon Zone (between 70 and 65 Ma), and the Kurudere-Nebiler Unit (c. 52-45 Ma). The southward younging trend of the HP-LT metamorphism from the upper and internal to the deeper and more external structural units, as in the Aegean Domain, points to the persistence of subduction in Western Anatolia between 93-90 and c. 35 Ma. After the accretion of the Menderes-Tauride terrane, in Eocene times, subduction stopped, leading to continental collision and associated Barrovian-type metamorphism. Because, by contrast, the Aegean subduction did remain active due to slab roll-back and trench migration, the eastern limb (below Southwestern Anatolia) of the Hellenic slab was dramatically curved and consequently teared. It therefore is suggested that the possibility for subduction to continue after the accretion of buoyant (e.g. continental) terranes probably depends much on palaeogeography.}, language = {en} } @article{WiederkehrSudoBousquetetal.2009, author = {Wiederkehr, Michael and Sudo, Masafumi and Bousquet, Romain and Berger, Alfons and Schmid, Stefan M.}, title = {Alpine orogenic evolution from subduction to collisional thermal overprint : the Ar-40/Ar-39 age constraints from the Valaisan Ocean, central Alps}, issn = {0278-7407}, doi = {10.1029/2009tc002496}, year = {2009}, abstract = {The investigated HP/LT metasedimentary units of the Valaisan and adjacent European domains occupy a key position in the Alpine belt for understanding the transition from early subduction-related HP/LT metamorphism to collision-related Barrovian overprint and the evolution of mountain belts in general. The timing of high-pressure metamorphism, subsequent retrogression and following Barrow-type overprint was studied by Ar-40/Ar-39 dating of biotite and several white mica generations that are well characterized in terms of mineral chemistry, texture and associated mineral assemblages. Four distinct age populations of white mica record peak pressure conditions (42-40 Ma) and several stages of subsequent retrograde metamorphic evolution (36-25 Ma). Biotite isotopic analyses yield consistent apparent ages that cluster around 18-16 Ma for the Barrow-type thermal overprint. The recorded isotopic data reveal a significant time gap in the order of some 20 Ma between subduction-related HP/LT metamorphism and collision-related Barrovian overprint, supporting the notion of a polymetamorphic evolution associated with a bimodal P-T path.}, language = {en} } @article{WillnerSepulvedaHerveetal.2009, author = {Willner, Arne P. and Sep{\´u}lveda, Fernando A. and Herv{\´e}, Francisco and Massonne, Hans-Joachim and Sudo, Masafumi}, title = {Conditions and timing of pumpellyite-actinolite-facies metamorphism in the early Mesozoic frontal accretionary prism of the Madre de Dios Archipelago (latitude 50 degrees 20'S; Southern Chile)}, issn = {0022-3530}, doi = {10.1093/petrology/egp071}, year = {2009}, abstract = {The Madre de Dios Metamorphic Complex (MDMC) in southern Chile is a fossil frontal accretionary prism, which is mainly composed of metapsammopelitic rocks, intercalations of oceanic rocks (greenstone and metachert) and platform carbonate. We concentrated on the metabasite to decipher the metamorphic evolution. This rock type contains assemblages of the pumpellyite-actinolite facies: pumpellyite +/- actinolite-chlorite +/- grandite +/- phengite +/- epidote-albite- quartz-titanite +/- K-feldspar +/- calcite. The metamorphic phases mainly grew by prograde hydration reactions during various episodes of restricted fluid influx. Fundamental phase relations of the pumpellyite-actinolite facies and adjacent facies were reproduced by pseudosections calculated for the system K2O-Na2O-CaO-FeO-O-2-MgO-Al2O3-TiO2-SiO2-H2O- CO2 at 200-400 degrees C and 1-9 kbar. The calculated stability fields of the metamorphic assemblages as realized in the MDMC metabasite indicate highest metamorphic conditions restricted to 290-310 degrees C, 4-6 kbar for the MDMC, presumably as a result of the main fluid influx at these conditions. Nevertheless, earlier local equilibria are still preserved as a result of strongly kinetically controlled mineral reactions and a lack of recrystallization and compositional homogenization at thin-section scale. Hence, thermodynamic calculations of local multivariant mineral equilibria using the entire compositional variation of minerals in the MDMC show that the prograde PT path evolved from 4 +/- 1 kbar, 200-220 degrees C to 5 +/- 1 kbar, 290-330 degrees C. The prograde PT path reflects nearly horizontal particle paths after reaching the maximum depth typical for frontal accretionary prisms. Long residence at maximum depth resulted in thermal re-equilibration. Ar-40/Ar-39 spot ages were measured by in situ UV laser ablation of local phengite concentrations in a deformed metapelite at 233 center dot 2 +/- 1 center dot 8 Ma and in an undeformed metabasite at 200 center dot 8 +/- 2 center dot 4 Ma. Whereas the first age represents an age of accretion, the latter age can be attributed to mineral growth either during a younger stage of accretion or during a retrograde stage. Ar-40/Ar-39 isotopic analyses of two further metabasite samples reflect a prominent resetting of ages at 152 center dot 0 +/- 2 center dot 2 Ma and white mica growth during external fluid access triggered by either a local intrusion or a late Jurassic extensional episode.}, language = {en} } @article{CarrapaDeCellesReinersetal.2009, author = {Carrapa, Barbara and DeCelles, Peter G. and Reiners, Peter W. and Gehrels, George E. and Sudo, Masafumi}, title = {Apatite triple dating and white mica Ar-40/Ar-39 thermochronology of syntectonic detritus in the Central Andes : a multiphase tectonothermal history}, issn = {0091-7613}, doi = {10.1130/G25698a.1}, year = {2009}, abstract = {We applied apatite U-Pb, fission track, and (U-Th)/He triple dating and white mica Ar-40/Ar-39 thermochronology to syntectonic sedimentary rocks from the central Andean Puna plateau in order to determine the source-area geochronology and source sedimentary basin thermal histories, and ultimately the timing of multiple tectonothermal events in the Central Andes. Apatite triple dating of samples from the Eocene Geste Formation in the Salar de Pastos Grandes basin shows late Precambrian-Devonian apatite U-Pb crystallization ages, Eocene apatite fission track (AFT), and Eocene-Miocene (U-Th)/He (ca. 8-47 Ma) cooling ages. Double dating of cobbles from equivalent strata in the Arizaro basin documents early Eocene (46.2 +/- 3.9 Ma) and Cretaceous (107.6 +/- 7.6, 109.5 +/- 7.7 Ma) AFT and Eocene-Oligocene (ca. 55-30 Ma) (U-Th)/He ages. Thermal modeling suggests relatively rapid cooling between ca. 80 and 50 Ma and reheating and subsequent diachronous basin exhumation between ca. 30 Ma and 5 Ma. The Ar-40/Ar-39 white mica ages from the same samples in the Salar de Pastos Grandes area are mainly 400-350 Ma, younger than apatite U-Pb ages, suggesting source- terrane cooling and exhumation during the Devonian-early Carboniferous. Together these data reveal multiple phases of mountain building in the Paleozoic and Cenozoic. Basin burial temperatures within the plateau were limited to <80 degrees C and incision occurred diachronously during the Cenozoic.}, language = {en} } @article{BachmannOnckenGlodnyetal.2009, author = {Bachmann, Raik and Oncken, Onno and Glodny, Johannes and Seifert, Wolfgang and Georgieva, Viktoria and Sudo, Masafumi}, title = {Exposed plate interface in the European Alps reveals fabric styles and gradients related to an ancient seismogenic coupling zone}, issn = {0148-0227}, doi = {10.1029/2008jb005927}, year = {2009}, abstract = {We present observations from a continuous exposure of an ancient plate interface in the depth range of its former seismogenic zone in the central Alps of Europe related to Late Cretaceous-early Tertiary subduction and accretion of the South Penninic lower plate underneath the Adriatic upper plate. The material forming the exposed plate interface zone has experienced flow and fracturing over an extended period of time followed by syncollisional exhumation, thus reflecting a multistage evolution. Fabric formation and metamorphism, however, chiefly record the deformation conditions of the precollisional setting along the plate interface. We identify an unstable slip domain from pseudotachylytes occurring in the temperature range between 200 and 300 degrees C. This zone coincides with a domain of intense veining in the subduction melange with mineral growth into open cavities, indicating fast, possibly seismic, rupture. Evidence for transient near-lithostatic fluid pressure as well as brittle fractures competing with mylonitic shear zones continues into the region below the occurrence of pseudotachylytes, possibly reflecting a zone of conditionally stable slip. The zone above the unstable slip area is devoid of veins but displays ample evidence of fluid-assisted processes similar to the deeper zone: solution-precipitation creep and dehydration reactions in the melange matrix, hydration, and sealing of the base of the upper plate. Seismic rupture here is possibly expressed by ubiquitous localized deformation zones. We hypothesize that trenchward sealing of parts of the plate interface as well as reaction-enhanced destruction of upper plate permeability is an important component, localizing the unstable slip zone. This relation may result from the competition of the pervasive, presumably interseismic, pressure solution creep destroying permeability and building elevated fluid pressure until the strength threshold is reached with seismic failure.}, language = {en} } @article{VasquezAltenbergerRomeretal.2010, author = {Vasquez, M{\´o}nica and Altenberger, Uwe and Romer, Rolf L. and Sudo, Masafumi and Moreno-Murillo, Juan Manuel}, title = {Magmatic evolution of the Andean Eastern Cordillera of Colombia during the Cretaceous : Influence of previous tectonic processes}, issn = {0895-9811}, doi = {10.1016/j.jsames.2009.02.003}, year = {2010}, abstract = {The Eastern Cordillera of the Colombian Andes represents an inverted Cretaceous basin where Cretaceous magmatism is characterized by rare mafic dykes and sills. We use Ar-40/Ar-39, Sr-Nd-Pb isotopes, as well as major and trace elements analyses of Cretaceous intrusions from both flanks of the Eastern Cordillera in combination with structural data to document the complex evolution of the basin. Magmatism, which is diachronous and geochemically diverse, seems to be related to mantle melting beneath the most subsiding segments of each sub-basin during enhanced extensional tectonics. The mafic intrusions display two different compositional series: an alkaline one with OIB-like pattern and a tholeiitic one with MORB-like features. This indicates at least two diverse mantle sources. Trace-element patterns suggest that the intrusions were emplaced in an extensional setting. Ar-40/Ar-39 dating on primary plagioclase and hornblende provides plateau ages between similar to 136 and similar to 74 Ma. The geochemical and temporal diversities show that the emplacement of the magmas was tectonically controlled, each sub-basin reflecting an individual subsidence event.}, language = {en} } @article{WilkeO'BrienGerdesetal.2010, author = {Wilke, Franziska Daniela Helena and O'Brien, Patrick J. and Gerdes, Axel and Timmerman, Martin Jan and Sudo, Masafumi and Khan, M. Ahmed}, title = {The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and Ar-40/Ar- 39 ages}, issn = {0935-1221}, doi = {10.1127/0935-1221/2010/0022-2051}, year = {2010}, abstract = {Amphibole and mica Ar-40/Ar-39 ages as well as zircon, rutile and titanite U-Pb geochronology of eclogites and associated host rocks from the Higher Himalayan Crystalline Nappes (Indian Plate) in the Upper Kaghan Valley, Pakistan allow distinction of a multistage exhumation history. An Eocene age for peak-pressure metamorphism has been obtained by phengite Ar-40/Ar-39 (47.3 +/- 0.3 Ma) and zircon U-Pb (47.3 +/- 0.4 and 47.4 +/- 0.3 Ma) ages from cover and basement gneisses. A very short-lived metamorphic peak and rapid cooling is documented by an amphibole Ar-40/Ar-39 age of 46.6 +/- 0.5 Ma and a rutile U-Pb age of 44.1 +/- 1.3 Ma from eclogites. Phengite and biotite ages from cover and basement sequences metamorphosed during the Himalayan orogeny are 34.5 +/- 0.2 to 28.1 +/- 0.2 Ma whereas youngest biotites, yielding 23.6 +/- 0.1 and 21.7 +/- 0.2 Ma, probably reflect argon partial resetting. The amphibole age, together with those derived from phengite and zircon demonstrate a rate of initial exhumation of 86-143 mm/a i.e. an extremely rapid transport of the Indian Plate continental crust from ultra-high pressure (UHP) conditions back to crustal levels (47-46 Ma for transport from 140 to 40 km depth). Subsequent exhumation (46-41 Ma, 40-35 km) slowed to about 1 mm/a at the base of the continental crust but increased again later towards slightly higher exhumation rates of ca. 2 mm/a (41-34 Ma, 35- 20 km). This indicates a change from buoyancy-driven exhumation at mantle depths to compression forces related to continent-continent collision and accompanied crustal folding, thrusting and stacking that finally exposed the former deeply-buried rocks.}, language = {en} } @article{OzawaTagamiSudo2004, author = {Ozawa, Ayako and Tagami, T. and Sudo, Masafumi}, title = {K-Ar geochronology of the temporal change of eruptive style in the eastern Izu peninsula, central Japan}, issn = {1038-4871}, year = {2004}, abstract = {A recent K-Ar study elucidated that eruptive style in the eastern Izu peninsula changed from polygenetic to monogenetic volcano at 0.3-0.2 Ma. To narrow down the time of change, we determined 10 K-Ar ages on Togasayama Andesite of Amagi volcano, the youngest polygenetic volcano in the area, and Togasayama Monogenetic Volcano, one of the oldest monogenetic volcanoes in the area, which overlies a part of the Togasayama Andesite. Dating results showed that the Togasayama Andesite effused at least from 0.34 to 0.20 Ma, whereas the Togasayama Monogenetic Volcano erupted at 0.26- 0.29 Ma, suggesting that the northern part of the Togasayama Andesite effused after the eruption of the Togasayama Monogenetic Volcano. Considering previous data, it is therefore inferred that change of eruptive style in the eastern Izu area occurred during the period 0.29-0.20 Ma, with considerable overlap of both polygenetic and monogenetic volcanism}, language = {en} } @article{OzawaTagamiListancoetal.2004, author = {Ozawa, Ayako and Tagami, Takahiro and Listanco, Eddie L. and Arpa, Carmencita B. and Sudo, Masafumi}, title = {Initiation and propagation of subduction along the Philippine Trench : evidence from the temporal and spatial distribution of volcanoes}, issn = {1367-9120}, year = {2004}, abstract = {K-Ar ages of 37 samples collected from the Bicol peninsula, the Luzon island, Philippines, were determined by the unspiked sensitivity method in order to constrain the timing of initiation of subduction along the Philippine Trench. The measured K-Ar ages range from 0 to 7 Ma with two old outliers of 27 and 43 Ma. Together with K-Ar ages previously reported on volcanics in Leyte and eastern Mindanao, subduction volcanism has likely propagated from north to south: similar to 6.6 Ma in Bicol and similar to 3.5 Ma in Leyte and its vicinity. The temporal and spatial distribution suggests that the subduction volcanism started earlier in the north than in the south. This is consistent with the southern propagation of subduction along the Philippine Trench from similar to 8 Ma. (C) 2003 Elsevier Ltd. All rights reserved}, language = {en} }