@article{YildirimSchildgenEchtleretal.2013, author = {Yildirim, Cengiz and Schildgen, Taylor F. and Echtler, Helmut Peter and Melnick, Daniel and Bookhagen, Bodo and Ciner, T. Attila and Niedermann, Samuel and Merchel, Silke and Martschini, Martin and Steier, Peter and Strecker, Manfred}, title = {Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20066}, pages = {1107 -- 1120}, year = {2013}, abstract = {We document Quaternary fluvial incision driven by fault-controlled surface deformation in the inverted intermontane G{\"o}kirmak Basin in the Central Pontide mountains along the northern margin of the Central Anatolian Plateau. In-situ-produced Be-10, Ne-21, and Cl-36 concentrations from gravel-covered fluvial terraces and pediment surfaces along the trunk stream of the basin (the G{\"o}kirmak River) yield model exposure ages ranging from 71ka to 34645ka and average fluvial incision rates over the past similar to 350ka of 0.280.01mm a(-1). Similarities between river incision rates and coastal uplift rates at the Black Sea coast suggest that regional uplift is responsible for the river incision. Model exposure ages of deformed pediment surfaces along tributaries of the trunk stream range from 605ka to 110 +/- 10ka, demonstrating that the thrust faults responsible for pediment deformation were active after those times and were likely active earlier as well as explaining the topographic relief of the region. Together, our data demonstrate cumulative incision that is linked to active internal shortening and uplift of similar to 0.3mm a(-1) in the Central Pontide orogenic wedge, which may ultimately contribute to the lateral growth of the northern Anatolian Plateau.}, language = {en} } @article{YildirimMelnickBallatoetal.2013, author = {Yildirim, Cengiz and Melnick, Daniel and Ballato, Paolo and Schildgen, Taylor F. and Echtler, Helmut Peter and Erginal, A. Evren and Kiyak, Nafiye Gunec and Strecker, Manfred}, title = {Differential uplift along the northern margin of the Central Anatolian Plateau - inferences from marine terraces}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {81}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.09.011}, pages = {12 -- 28}, year = {2013}, abstract = {Emerged marine terraces and paleoshorelines along plate margins are prominent geomorphic markers that can be used to quantify the rates and patterns of crustal deformation. The northern margin of the Central Anatolian Plateau has been interpreted as an actively deforming orogenic wedge between the North Anatolian Fault and the Black Sea. Here we use uplifted marine terraces across principal faults on the Sinop Peninsula at the central northern side of the Pontide orogenic wedge to unravel patterns of Quaternary faulting and orogenic wedge behavior. We leveled the present-day elevations of paleoshorelines and dated marine terrace deposits using optically stimulated luminescence (OSL) to determine coastal uplift. The elevations of the paleoshorelines vary between 4 +/- 0.2 and 67 +/- 1.4 m above sea level and OSL ages suggest terrace formation episodes during interglacial periods at ca 125, 190, 400 and 570 ka, corresponding to marine isotopic stages (MIS) 5e, 7a, 11 and 15. Mean apparent vertical displacement rates (without eustatic correction) deduced from these terraces range between 0.02 and 0.18 mm/a, with intermittent faster rates of up to 0.26 mm/a. We obtained higher rates at the eastern and southern parts of the peninsula, toward the hinterland, indicating non-uniform uplift across the different morphotectonic segments of the peninsula. Our data are consistent with active on- and offshore faulting across the Sinop Peninsula. When integrated with regional tectonic observations, the faulting pattern reflects shortening distributed over a broad region of the northern margin of the Central Anatolian Plateau during the Quaternary.}, language = {en} } @article{SchildgenHodgesWhippleetal.2009, author = {Schildgen, Taylor F. and Hodges, Kip V. and Whipple, Kelin X. and Pringle, Malcolm S. and van Soest, Matthijs and Cornell, Katrina}, title = {Late Cenozoic structural and tectonic development of the western margin of the central Andean Plateau in southwest Peru}, issn = {0278-7407}, doi = {10.1029/2008tc002403}, year = {2009}, abstract = {Structural and thermochronologic studies of the western margin of the central Andean Plateau show changing styles of deformation through time that give insights into tectonic evolution. In southwest Peru, uplift of the plateau proceeded in several distinct phases. First, NW striking, NE dipping reverse faults accommodated uplift prior to similar to 14-16 Ma. Subsequent uplift of the plateau relative to the piedmont (between the plateau and the Pacific Ocean) occurred between similar to 14 and 2.2 Ma and was accommodated by NW striking, SW dipping normal faults and subparallel monoclinal folds. The youngest phase of uplift affected the piedmont region and the plateau margin as a coherent block. Although the uplift magnitude associated with phase 1 is unknown, phases 2 and 3 resulted in at least 2.4-3.0 km of uplift. Up to 1 km of this may have occurred during phase 3. Geodynamic processes occurring in both the continental interior and the subduction zone likely contributed to uplift.}, language = {en} } @article{SchildgenEhlersWhippetal.2009, author = {Schildgen, Taylor F. and Ehlers, Todd and Whipp, David M. and van Soest, Matthijs C. and Whipple, Kelin X. and Hodges, Kip V.}, title = {Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru : a thermochronometer and numerical modeling approach}, issn = {0148-0227}, doi = {10.1029/2009jf001305}, year = {2009}, abstract = {Apatite and zircon (U-Th)/He ages from Ocona canyon at the western margin of the Central Andean plateau record rock cooling histories induced by a major phase of canyon incision. We quantify the timing and magnitude of incision by integrating previously published ages from the valley bottom with 19 new sample ages from four valley wall transects. Interpretation of the incision history from cooling ages is complicated by a southwest to northeast increase in temperatures at the base of the crust due to subduction and volcanism. Furthermore, the large magnitude of incision leads to additional three-dimensional variations in the thermal field. We address these complications with finite element thermal and thermochronometer age prediction models to quantify the range of topographic evolution scenarios consistent with observed cooling ages. Comparison of 275 model simulations to observed cooling ages and regional heat flow determinations identify a best fit history with <= 0.2 km of incision in the forearc region prior to similar to 14 Ma and up to 3.0 km of incision starting between 7 and 11 Ma. Incision starting at 7 Ma requires incision to end by similar to 5.5 to 6 Ma. However, a 2.2 Ma age on a volcanic flow on the current valley floor and 5 Ma gravels on the uplifted piedmont surface together suggest that incision ended during the time span between 2.2 and 5 Ma. These additional constraints for incision end time lead to a range of best fit incision onset times between 8 and 11 Ma, which must coincide with or postdate surface uplift.}, language = {en} }