@article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Chromey, A. J. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, Karlen and Sushch, I. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Abdollahi, S. and Ajello, Marco and Baldini, Luca and Barbiellini, G. and Bastieri, Denis and Bellazzini, Ronaldo and Berenji, B. and Bissaldi, Elisabetta and Blandford, R. D. and Bonino, R. and Bottacini, E. and Brandt, Terri J. and Bruel, P. and Buehler, R. and Cameron, R. A. and Caputo, R. and Caraveo, P. A. and Castro, D. and Cavazzuti, E. and Charles, Eric and Chiaro, G. and Ciprini, S. and Cohen-Tanugi, Johann and Costantin, D. and Cutini, S. and de Palma, F. and Di Lalla, N. and Di Mauro, M. and Di Venere, L. and Dominguez, A. and Favuzzi, C. and Fegan, S. J. and Franckowiak, Anna and Fukazawa, Yasushi and Funk, Stefan and Fusco, Piergiorgio and Gargano, Fabio and Gasparrini, Dario and Giglietto, Nicola and Giordano, F. and Giroletti, Marcello and Green, D. and Grenier, I. A. and Guillemot, L. and Guiriec, Sylvain and Hays, Elizabeth and Hewitt, John W. and Horan, D. and Johannesson, G. and Kensei, S. and Kuss, M. and Larsson, Stefan and Latronico, L. and Lemoine-Goumard, Marianne and Li, J. and Longo, Francesco and Loparco, Francesco and Lovellette, M. N. and Lubrano, Pasquale and Magill, Jeffrey D. and Maldera, Simone and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, Tsunefumi and Monzani, Maria Elena and Morselli, Aldo and Moskalenko, Igor V. and Negro, M. and Nuss, E. and Ojha, R. and Omodei, Nicola and Orienti, M. and Orlando, E. and Palatiello, M. and Paliya, Vaidehi S. and Paneque, D. and Perkins, Jeremy S. and Persic, M. and Pesce-Rollins, Melissa and Petrosian, Vahe' and Piron, F. and Porter, Troy A. and Principe, G. and Raino, S. and Rando, Riccardo and Rani, B. and Razzano, Massimilano and Razzaque, Soebur and Reimer, A. and Reimer, Olaf and Reposeur, T. and Sgro, C. and Siskind, E. J. and Spandre, Gloria and Spinelli, P. and Suson, D. J. and Tajima, Hiroyasu and Thayer, J. B. and Thompson, David J. and Torres, Diego F. and Tosti, Gino and Troja, Eleonora and Valverde, J. and Vianello, Giacomo and Vogel, M. and Wood, K. and Yassine, M. and Alfaro, R. and Alvarez, C. and Alvarez, J. D. and Arceo, R. and Arteaga-Velazquez, J. C. and Rojas, D. Avila and Ayala Solares, H. A. and Becerril, A. and Belmont-Moreno, E. and BenZvi, S. Y. and Bernal, A. and Braun, J. and Brisbois, C. and Caballero-Mora, K. S. and Capistran, T. and Carraminana, A. and Casanova, Sabrina and Castillo, M. and Cotti, U. and Cotzomi, J. and Coutino de Leon, S. and De Leon, C. and De la Fuente, E. and Dichiara, S. and Dingus, B. L. and DuVernois, M. A. and Diaz-Velez, J. C. and Engel, K. and Enriquez-Rivera, O. and Fiorino, D. W. and Fleischhack, H. and Fraija, N. and Garcia-Gonzalez, J. A. and Garfias, F. and Gonzalez Munoz, A. and Gonzalez, M. M. and Goodman, J. A. and Hampel-Arias, Z. and Harding, J. P. and Hernandez, S. and Hernandez-Almada, A. and Hona, B. and Hueyotl-Zahuantitla, F. and Hui, C. M. and Huntemeyer, P. and Iriarte, A. and Jardin-Blicq, A. and Joshi, V. and Kaufmann, S. and Lara, A. and Lauer, R. J. and Lee, W. H. and Lennarz, D. and Leon Vargas, H. and Linnemann, J. T. and Longinotti, A. L. and Luis-Raya, G. and Luna-Garcia, R. and Lopez-Coto, R. and Malone, K. and Marinelli, S. S. and Martinez, O. and Martinez-Castellanos, I. and Martinez-Castro, J. and Martinez-Huerta, H. and Matthews, J. A. and Miranda-Romagnoli, P. and Moreno, E. and Mostafa, M. and Nayerhoda, A. and Nellen, L. and Newbold, M. and Nisa, M. U. and Noriega-Papaqui, R. and Pelayo, R. and Pretz, J. and Perez-Perez, E. G. and Ren, Z. and Rho, C. D. and Riviere, C. and Rosa-Gonzalez, D. and Rosenberg, M. and Ruiz-Velasco, E. and Salazar, H. and Greus, F. Salesa and Sandoval, A. and Schneider, M. and Arroyo, M. Seglar and Sinnis, G. and Smith, A. J. and Springer, R. W. and Surajbali, P. and Taboada, Ignacio and Tibolla, O. and Tollefson, K. and Torres, I. and Ukwatta, Tilan N. and Villasenor, L. and Weisgarber, T. and Westerhoff, Stefan and Wisher, I. G. and Wood, J. and Yapici, Tolga and Yodh, G. and Zepeda, A. and Zhou, H.}, title = {VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {866}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration Fermi-LAT Collaboration HAWC Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aade4e}, pages = {18}, year = {2018}, abstract = {The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Finley, J. P. and Fortson, L. and Furniss, Amy and Gent, A. and Gillanders, Gerald H. and Hanna, David and Hassan, T. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I. and Santander, Marcos and Schlenstedt, S. and Sembroski, G. H. and Sushch, Iurii and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J. and Zitzer, B. and Acciari, V. A. and Ansoldi, S. and Antonelli, L. A. and Engels, A. Arbet and Baack, D. and Babic, A. and Banerjee, B. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, Josefa and Bednarek, Wlodek and Bernardini, Elisa and Berti, A. and Besenrieder, J. and Bhattacharyya, W. and Bigongiari, C. and Biland, A. and Blanch, O. and Bonnoli, G. and Busetto, G. and Carosi, R. and Ceribella, G. and Cikota, S. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, J. and Di Pierro, F. and Do Souto Espinera, E. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Elsaesser, D. and Ramazani, V. Fallah and Fattorini, A. and Fernandez-Barral, A. and Ferrara, G. and Fidalgo, D. and Foffano, L. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Gallozzi, S. and Lopez, R. J. Garcia and Garczarczyk, M. and Gasparyan, S. and Gaug, Markus and Giammaria, P. and Godinovic, N. and Guberman, D. and Hadasch, D. and Hahn, A. and Herrera, J. and Hoang, J. and Hrupec, D. and Inoue, S. and Ishio, K. and Iwamura, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lamastra, A. and Lelas, D. and Leone, Francesco and Lindfors, E. and Lombardi, S. and Longo, Francesco and Lopez, M. and Lopez-Oramas, A. and Machado de Oliveira Fraga, B. and Maggio, C. and Majumdar, P. and Makariev, M. and Mallamaci, M. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Masuda, S. and Mazin, D. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Molina, E. and Moralejo, A. and Moreno, V. and Moretti, E. and Munar-Adrover, Pere and Neustroev, V. and Niedzwiecki, Andrzej and Rosillo, Mireia Nievas and Nigro, C. and Nilsson, Kari and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Noethe, M. and Paiano, Simona and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Penil, P. and Peresano, M. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Rhode, W. and Ribo, Marc and Rico, J. and Righi, C. and Rugliancich, A. and Saha, Lab and Sahakyan, Narek and Saito, T. and Satalecka, K. and Schweizer, T. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Somero, A. and Stamerra, A. and Strzys, M. and Suric, T. and Tavecchio, Fabrizio and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Tsujimoto, S. and van Scherpenberg, J. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Will, M. and Zaric, D.}, title = {Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {867}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration MAGIC Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aae70e}, pages = {8}, year = {2018}, abstract = {We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130.}, language = {en} } @article{SushchBrosePohl2018, author = {Sushch, Iurii and Brose, Robert and Pohl, Martin}, title = {Modeling of the spatially resolved nonthermal emission from the Vela Jr. supernova remnant}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {618}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832879}, pages = {11}, year = {2018}, abstract = {Vela Jr. (RX J0852.0-4622) is one of just a few known supernova remnants (SNRs) with a resolved shell across the whole electromagnetic spectrum from radio to very-high-energy (>100 GeV; VHE) gamma-rays. Its proximity and large size allow for detailed spatially resolved observations of the source, making Vela Jr. one of the primary sources used for the study of particle acceleration and emission mechanisms in SNRs. High-resolution X-ray observations reveal a steepening of the spectrum toward the interior of the remnant. In this study we aim for a self-consistent radiation model of Vela Jr. which at the same time would explain the broadband emission from the source and its intensity distribution. We solve the full particle transport equation combined with the high-resolution one-dimensional (1D) hydrodynamic simulations (using Pluto code) and subsequently calculate the radiation from the remnant. The equations are solved in the test particle regime. We test two models for the magnetic field profile downstream of the shock: damped magnetic field, which accounts for the damping of strong magnetic turbulence downstream, and transported magnetic field. Neither of these scenarios can fully explain the observed radial dependence of the X-ray spectrum under spherical symmetry. We show, however, that the softening of the spectrum and the X-ray intensity profile can be explained under the assumption that the emission is enhanced within a cone.}, language = {en} } @misc{PetrukKuzyoOrlandoetal.2019, author = {Petruk, Oleh and Kuzyo, T. and Orlando, S. and Pohl, Martin and Miceli, M. and Bocchino, F. and Beshley, V. and Brose, Robert}, title = {Erratum: Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment. - (Monthly notices of the Royal Astronomical Society. - 479, (2018), pg. 4253 - 4270)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2861}, pages = {1979 -- 1980}, year = {2019}, abstract = {This is a correction notice for 'Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment' (DOI: https://doi.org/10.1093/mnras/sty1750), which was published in MNRAS 479, 4253-4270 (2018). The publisher regrets to inform that the colour was missing from the colour scales in Figs 8(a)-(d) and Figs 9(a) and (b). This has now been corrected online. The publisher apologizes for this error.}, language = {en} } @article{GaoFedynitchWinteretal.2019, author = {Gao, Shan and Fedynitch, Anatoli and Winter, Walter and Pohl, Martin}, title = {Modelling the coincident observation of a high-energy neutrino and a bright blazar flare}, series = {Nature Astronomy}, volume = {3}, journal = {Nature Astronomy}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-018-0610-1}, pages = {88 -- 92}, year = {2019}, abstract = {In September 2017, the IceCube Neutrino Observatory recorded a very-high-energy neutrino in directional coincidence with a blazar in an unusually bright gamma-ray state, TXS0506 + 056 (refs(1,2)). Blazars are prominent photon sources in the Universe because they harbour a relativistic jet whose radiation is strongly collimated and amplified. High-energy atomic nuclei known as cosmic rays can produce neutrinos; thus, the recent detection may help in identifying the sources of the diffuse neutrino flux(3) and the energetic cosmic rays. Here we report a self-consistent analysis of the physical relation between the observed neutrino and the blazar, in particular the time evolution and spectral behaviour of neutrino and photon emission. We demonstrate that a moderate enhancement in the number of cosmic rays during the flare can yield a very strong increase in the neutrino flux, which is limited by co-produced hard X-rays and teraelectronvolt gamma rays. We also test typical radiation models(4,5) for compatibility and identify several model classes(6,7) as incompatible with the observations. We investigate to what degree the findings can be generalized to the entire population of blazars, determine the relation between their output in photons, neutrinos and cosmic rays, and suggest how to optimize the strategy of future observations.}, language = {en} } @article{VafinRiazantsevaPohl2019, author = {Vafin, Sergei and Riazantseva, Maria and Pohl, Martin}, title = {Coulomb collisions as a candidate for temperature anisotropy constraints in the solar wind}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {871}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/aafb11}, pages = {6}, year = {2019}, abstract = {Many solar wind observations at 1 au indicate that the proton (as well as electron) temperature anisotropy is limited. The data distribution in the (A(a), beta(a),(parallel to))-plane have a rhombic-shaped form around beta(a),(parallel to) similar to 1. The boundaries of the temperature anisotropy at beta(a),(parallel to) > 1 can be well explained by the threshold conditions of the mirror (whistler) and oblique proton (electron) firehose instabilities in a bi-Maxwellian plasma, whereas the physical mechanism of the similar restriction at beta(a),(parallel to) < 1 is still under debate. One possible option is Coulomb collisions, which we revisit in the current work. We derive the relaxation rate nu(A)(aa) of the temperature anisotropy in a bi-Maxwellian plasma that we then study analytically and by observed proton data from WIND. We found that nu(A)(pp) increases toward small beta(p),(parallel to) < 1. We matched the data distribution in the (A(p), beta(p),(parallel to))-plane with the constant contour nu(A)(pp) = 2.8 . 10(-6) s(-1), corresponding to the minimum value for collisions to play a role. This contour fits rather well the left boundary of the rhombic-shaped data distribution in the (A(p), beta(p),(parallel to))-plane. Thus, Coulomb collisions are an interesting candidate for explaining the limitations of the temperature anisotropy in the solar wind with small beta(a),(parallel to) < 1 at 1 au.}, language = {en} } @article{NishikawaMizunoGomezetal.2019, author = {Nishikawa, Ken-Ichi and Mizuno, Yosuke and Gomez, Jose L. and Duţan, Ioana and Meli, Athina and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin and Sol, H{\´e}l{\`e}ne and MacDonald, Nicholas and Hartmann, Dieter H.}, title = {Relativistic jet simulations of the weibel instability in the slab model to cylindrical jets with helical magnetic fields}, series = {Galaxies : open access journal}, volume = {7}, journal = {Galaxies : open access journal}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2075-4434}, doi = {10.3390/galaxies7010029}, pages = {20}, year = {2019}, abstract = {The particle-in-cell (PIC) method was developed to investigate microscopic phenomena, and with the advances in computing power, newly developed codes have been used for several fields, such as astrophysical, magnetospheric, and solar plasmas. PIC applications have grown extensively, with large computing powers available on supercomputers such as Pleiades and Blue Waters in the US. For astrophysical plasma research, PIC methods have been utilized for several topics, such as reconnection, pulsar dynamics, non-relativistic shocks, relativistic shocks, and relativistic jets. PIC simulations of relativistic jets have been reviewed with emphasis placed on the physics involved in the simulations. This review summarizes PIC simulations, starting with the Weibel instability in slab models of jets, and then focuses on global jet evolution in helical magnetic field geometry. In particular, we address kinetic Kelvin-Helmholtz instabilities and mushroom instabilities.}, language = {en} } @article{KumarGlobusEichleretal.2018, author = {Kumar, Rahul and Globus, Noemie and Eichler, David and Pohl, Martin}, title = {Time variability of TeV cosmic ray sky map}, series = {Monthly notices of the Royal Astronomical Society}, volume = {483}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty3141}, pages = {896 -- 900}, year = {2018}, abstract = {The variation in the intensity of cosmic rays at small angular scales is attributed to the interstellar turbulence in the vicinity of the Solar system. We show that a turbulent origin of the small-scale structures implies that the morphology of the observed cosmic ray intensity skymap varies with our location in the interstellar turbulence. The gyroradius of cosmic rays is shown to be the length scale associated with an observable change in the skymap over a radian angular scale. The extent to which the intensity at a certain angular scale varies is proportional to the change in our location with a maximum change of about the amplitude of intensity variation at that scale in the existing skymap. We suggest that for TeV cosmic rays a measurable variation could occur over a time-scale of a decade due to the Earth's motion through the interstellar medium, if interstellar turbulence persists down to the gyroradius, about 300 μpc for TeV-ish cosmic rays. Observational evidence of the variability, or an absence of it, could provide a useful insight into the physical origin of the small-scale anisotropy.}, language = {en} } @article{VafinDekaPohletal.2019, author = {Vafin, Sergei and Deka, Pranab Jyoti and Pohl, Martin and Bohdan, Artem}, title = {Revisit of Nonlinear Landau Damping for Electrostatic Instability Driven by Blazar-induced Pair Beams}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {873}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab017b}, pages = {12}, year = {2019}, abstract = {We revisit the effect of nonlinear Landau (NL) damping on the electrostatic instability of blazar-induced pair beams, using a realistic pair-beam distribution. We employ a simplified 2D model in k-space to study the evolution of the electric-field spectrum and to calculate the relaxation time of the beam. We demonstrate that the 2D model is an adequate representation of the 3D physics. We find that nonlinear Landau damping, once it operates efficiently, transports essentially the entire wave energy to small wave numbers where wave driving is weak or absent. The relaxation time also strongly depends on the intergalactic medium temperature, T-IGM, and for T-IGM << 10 eV, and in the absence of any other damping mechanism, the relaxation time of the pair beam is longer than the inverse Compton (IC) scattering time. The weak late-time beam energy losses arise from the accumulation of wave energy at small k, that nonlinearly drains the wave energy at the resonant k of the pair-beam instability. Any other dissipation process operating at small k would reduce that wave-energy drain and hence lead to stronger pair-beam energy losses. As an example, collisions reduce the relaxation time by an order of magnitude, although their rate is very small. Other nonlinear processes, such as the modulation instability, could provide additional damping of the nonresonant waves and dramatically reduce the relaxation time of the pair beam. An accurate description of the spectral evolution of the electrostatic waves is crucial for calculating the relaxation time of the pair beam.}, language = {en} } @article{ArcherBenbowBirdetal.2019, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Chromey, A. J. and Cui, Wei and Falcone, A. and Feng, Qi and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Olivier and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, D. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab14f4}, pages = {14}, year = {2019}, abstract = {We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95\% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.}, language = {en} }