@phdthesis{Albrecht2023, author = {Albrecht, Kim Frederic}, title = {Insight by de—sign}, doi = {10.25932/publishup-57509}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-575092}, school = {Universit{\"a}t Potsdam}, pages = {412}, year = {2023}, abstract = {The calculus of design is a diagrammatic approach towards the relationship between design and insight. The thesis I am evolving is that insights are not discovered, gained, explored, revealed, or mined, but are operatively de—signed. The de in design neglects the contingency of the space towards the sign. The — is the drawing of a distinction within the operation. Space collapses through the negativity of the sign; the command draws a distinction that neglects the space for the form's sake. The operation to de—sign is counterintuitively not the creation of signs, but their removal, the exclusion of possible sign propositions of space. De—sign is thus an act of exclusion; the possibilities of space are crossed into form.}, language = {en} } @phdthesis{Aktas2023, author = {Aktas, Berfin}, title = {Variation in coreference patterns}, doi = {10.25932/publishup-59608}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-596086}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 195}, year = {2023}, abstract = {This thesis explores the variation in coreference patterns across language modes (i.e., spoken and written) and text genres. The significance of research on variation in language use has been emphasized in a number of linguistic studies. For instance, Biber and Conrad [2009] state that "register/genre variation is a fundamental aspect of human language" and "Given the ubiquity of register/genre variation, an understanding of how linguistic features are used in patterned ways across text varieties is of central importance for both the description of particular languages and the development of cross-linguistic theories of language use."[p.23] We examine the variation across genres with the primary goal of contributing to the body of knowledge on the description of language use in English. On the computational side, we believe that incorporating linguistic knowledge into learning-based systems can boost the performance of automatic natural language processing systems, particularly for non-standard texts. Therefore, in addition to their descriptive value, the linguistic findings we provide in this study may prove to be helpful for improving the performance of automatic coreference resolution, which is essential for a good text understanding and beneficial for several downstream NLP applications, including machine translation and text summarization. In particular, we study a genre of texts that is formed of conversational interactions on the well-known social media platform Twitter. Two factors motivate us: First, Twitter conversations are realized in written form but resemble spoken communication [Scheffler, 2017], and therefore they form an atypical genre for the written mode. Second, while Twitter texts are a complicated genre for automatic coreference resolution, due to their widespread use in the digital sphere, at the same time they are highly relevant for applications that seek to extract information or sentiments from users' messages. Thus, we are interested in discovering more about the linguistic and computational aspects of coreference in Twitter conversations. We first created a corpus of such conversations for this purpose and annotated it for coreference. We are interested in not only the coreference patterns but the overall discourse behavior of Twitter conversations. To address this, in addition to the coreference relations, we also annotated the coherence relations on the corpus we compiled. The corpus is available online in a newly developed form that allows for separating the tweets from their annotations. This study consists of three empirical analyses where we independently apply corpus-based, psycholinguistic and computational approaches for the investigation of variation in coreference patterns in a complementary manner. (1) We first make a descriptive analysis of variation across genres through a corpus-based study. We investigate the linguistic aspects of nominal coreference in Twitter conversations and we determine how this genre relates to other text genres in spoken and written modes. In addition to the variation across genres, studying the differences in spoken-written modes is also in focus of linguistic research since from Woolbert [1922]. (2) In order to investigate whether the language mode alone has any effect on coreference patterns, we carry out a crowdsourced experiment and analyze the patterns in the same genre for both spoken and written modes. (3) Finally, we explore the potentials of domain adaptation of automatic coreference resolution (ACR) for the conversational Twitter data. In order to answer the question of how the genre of Twitter conversations relates to other genres in spoken and written modes with respect to coreference patterns, we employ a state-of-the-art neural ACR model [Lee et al., 2018] to examine whether ACR on Twitter conversations will benefit from mode-based separation in out-of-domain training data.}, language = {en} } @phdthesis{Akbal2023, author = {Akbal, Zeynep}, title = {Lived-Body Experiences in Virtual Reality}, series = {Digitale Gesellschaft}, volume = {61}, journal = {Digitale Gesellschaft}, publisher = {transcript}, address = {Bielefeld}, isbn = {978-3-8376-6676-2}, school = {Universit{\"a}t Potsdam}, pages = {210}, year = {2023}, language = {en} } @phdthesis{Agarwal2023, author = {Agarwal, Pallavi}, title = {Functional characterization of ROS-responsive genes, ANAC085 and ATR7, in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 169}, year = {2023}, language = {en} } @phdthesis{Afifi2023, author = {Afifi, Haitham}, title = {Wireless In-Network Processing for Multimedia Applications}, doi = {10.25932/publishup-60437}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604371}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 233}, year = {2023}, abstract = {With the recent growth of sensors, cloud computing handles the data processing of many applications. Processing some of this data on the cloud raises, however, many concerns regarding, e.g., privacy, latency, or single points of failure. Alternatively, thanks to the development of embedded systems, smart wireless devices can share their computation capacity, creating a local wireless cloud for in-network processing. In this context, the processing of an application is divided into smaller jobs so that a device can run one or more jobs. The contribution of this thesis to this scenario is divided into three parts. In part one, I focus on wireless aspects, such as power control and interference management, for deciding which jobs to run on which node and how to route data between nodes. Hence, I formulate optimization problems and develop heuristic and meta-heuristic algorithms to allocate wireless and computation resources. Additionally, to deal with multiple applications competing for these resources, I develop a reinforcement learning (RL) admission controller to decide which application should be admitted. Next, I look into acoustic applications to improve wireless throughput by using microphone clock synchronization to synchronize wireless transmissions. In the second part, I jointly work with colleagues from the acoustic processing field to optimize both network and application (i.e., acoustic) qualities. My contribution focuses on the network part, where I study the relation between acoustic and network qualities when selecting a subset of microphones for collecting audio data or selecting a subset of optional jobs for processing these data; too many microphones or too many jobs can lessen quality by unnecessary delays. Hence, I develop RL solutions to select the subset of microphones under network constraints when the speaker is moving while still providing good acoustic quality. Furthermore, I show that autonomous vehicles carrying microphones improve the acoustic qualities of different applications. Accordingly, I develop RL solutions (single and multi-agent ones) for controlling these vehicles. In the third part, I close the gap between theory and practice. I describe the features of my open-source framework used as a proof of concept for wireless in-network processing. Next, I demonstrate how to run some algorithms developed by colleagues from acoustic processing using my framework. I also use the framework for studying in-network delays (wireless and processing) using different distributions of jobs and network topologies.}, language = {en} }