@misc{SmirnovBolotovBolotovetal.2022, author = {Smirnov, Lev A. and Bolotov, Maxim and Bolotov, Dmitri and Osipov, Grigory V. and Pikovsky, Arkady}, title = {Finite-density-induced motility and turbulence of chimera solitons}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1291}, issn = {1866-8372}, doi = {10.25932/publishup-57428}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574281}, pages = {15}, year = {2022}, abstract = {We consider a one-dimensional oscillatory medium with a coupling through a diffusive linear field. In the limit of fast diffusion this setup reduces to the classical Kuramoto-Battogtokh model. We demonstrate that for a finite diffusion stable chimera solitons, namely localized synchronous domain in an infinite asynchronous environment, are possible. The solitons are stable also for finite density of oscillators, but in this case they sway with a nearly constant speed. This finite-density-induced motility disappears in the continuum limit, as the velocity of the solitons is inverse proportional to the density. A long-wave instability of the homogeneous asynchronous state causes soliton turbulence, which appears as a sequence of soliton mergings and creations. As the instability of the asynchronous state becomes stronger, this turbulence develops into a spatio-temporal intermittency.}, language = {en} } @article{MuravevaBekirLomadzeetal.2022, author = {Muraveva, Valeriia and Bekir, Marek and Lomadze, Nino and Großmann, Robert and Beta, Carsten and Santer, Svetlana}, title = {Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {23}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0090229}, pages = {5}, year = {2022}, abstract = {Flow control is a highly relevant topic for micromanipulation of colloidal particles in microfluidic applications. Here, we report on a system that combines two-surface bound flows emanating from thermo-osmotic and diffusio-osmotic mechanisms. These opposing flows are generated at a gold surface immersed into an aqueous solution containing a photo-sensitive surfactant, which is irradiated by a focused UV laser beam. At low power of incoming light, diffusio-osmotic flow due to local photo-isomerization of the surfactant dominates, resulting in a flow pattern oriented away from the irradiated area. In contrast, thermo-osmotic flow takes over due to local heating of the gold surface at larger power, consequently inducing a flow pointing toward the hotspot. In this way, this system allows one to reversibly switch from outward to inward liquid flow with an intermittent range of zero flow at which tracer particles undergo thermal motion by just tuning the laser intensity only. Our work, thus, demonstrates an optofluidic system for flow generation with a high degree of controllability that is necessary to transport particles precisely to desired locations, thereby opening innovative possibilities to generate advanced microfluidic applications.}, language = {en} } @misc{MientusHumeWulffetal.2022, author = {Mientus, Lukas and Hume, Anne Christine and Wulff, Peter and Meiners, Antoinette and Borowski, Andreas}, title = {Modelling STEM Teachers' Pedagogical Content Knowledge in the Framework of the Refined Consensus Model: A Systematic Literature Review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-56912}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569127}, pages = {1 -- 25}, year = {2022}, abstract = {Science education researchers have developed a refined understanding of the structure of science teachers' pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies' approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice.}, language = {en} } @article{MientusHumeWulffetal.2022, author = {Mientus, Lukas and Hume, Anne and Wulff, Peter and Meiners, Antoinette and Borowski, Andreas}, title = {Modelling STEM teachers' pedagogical content knowledge in the framework of the refined consensus model}, series = {Education Sciences : open access journal}, volume = {12}, journal = {Education Sciences : open access journal}, edition = {6}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2227-7102}, doi = {10.3390/educsci12060385}, pages = {1 -- 25}, year = {2022}, abstract = {Science education researchers have developed a refined understanding of the structure of science teachers' pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies' approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice.}, language = {en} } @article{CestnikPikovsky2022, author = {Cestnik, Rok and Pikovsky, Arkady}, title = {Hierarchy of exact low-dimensional reductions for populations of coupled oscillators}, series = {Physical review letters}, volume = {128}, journal = {Physical review letters}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.128.054101}, pages = {6}, year = {2022}, abstract = {We consider an ensemble of phase oscillators in the thermodynamic limit, where it is described by a kinetic equation for the phase distribution density. We propose an Ansatz for the circular moments of the distribution (Kuramoto-Daido order parameters) that allows for an exact truncation at an arbitrary number of modes. In the simplest case of one mode, the Ansatz coincides with that of Ott and Antonsen [Chaos 18, 037113 (2008)]. Dynamics on the extended manifolds facilitate higher-dimensional behavior such as chaos, which we demonstrate with a simulation of a Josephson junction array. The findings are generalized for oscillators with a Cauchy-Lorentzian distribution of natural frequencies.}, language = {en} } @phdthesis{Ilin2022, author = {Ilin, Ekaterina}, title = {High lights: stellar flares as probes of magnetism in stars and star-planet systems}, doi = {10.25932/publishup-56356}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563565}, school = {Universit{\"a}t Potsdam}, pages = {x, 168}, year = {2022}, abstract = {Flares are magnetically driven explosions that occur in the atmospheres of all main sequence stars that possess an outer convection zone. Flaring activity is rooted in the magnetic dynamo that operates deep in the stellar interior, propagates through all layers of the atmosphere from the corona to the photosphere, and emits electromagnetic radiation from radio bands to X-ray. Eventually, this radiation, and associated eruptions of energetic particles, are ejected out into interplanetary space, where they impact planetary atmospheres, and dominate the space weather environments of young star-planet systems. Thanks to the Kepler and the Transit Exoplanet Survey Satellite (TESS) missions, flare observations have become accessible for millions of stars and star-planet systems. The goal of this thesis is to use these flares as multifaceted messengers to understand stellar magnetism across the main sequence, investigate planetary habitability, and explore how close-in planets can affect the host star. Using space based observations obtained by the Kepler/K2 mission, I found that flaring activity declines with stellar age, but this decline crucially depends on stellar mass and rotation. I calibrated the age of the stars in my sample using their membership in open clusters from zero age main sequence to solar age. This allowed me to reveal the rapid transition from an active, saturated flaring state to a more quiescent, inactive flaring behavior in early M dwarfs at about 600-800 Myr. This result is an important observational constraint on stellar activity evolution that I was able to de-bias using open clusters as an activity-independent age indicator. The TESS mission quickly superseded Kepler and K2 as the main source of flares in low mass M dwarfs. Using TESS 2-minute cadence light curves, I developed a new technique for flare localization and discovered, against the commonly held belief, that flares do not occur uniformly across their stellar surface: In fast rotating fully convective stars, giant flares are preferably located at high latitudes. This bears implications for both our understanding of magnetic field emergence in these stars, and the impact on the exoplanet atmospheres: A planet that orbits in the equatorial plane of its host may be spared from the destructive effects of these poleward emitting flares. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b is one of the most promising targets for a first observation of flaring star-planet interactions. In these interactions, the planet influences the star, as opposed to space weather, where the planet is always on the receiving side. The effect reflects the properties of the magnetosphere shared by planet and star, as well as the so far inaccessible magnetic properties of planets. In the about 50 days of TESS monitoring data of AU Mic, I searched for statistically robust signs of flaring interactions with AU Mic b as flares that occur in surplus of the star's intrinsic activity. I found the strongest yet still marginal signal in recurring excess flaring in phase with the orbital period of AU Mic b. If it reflects true signal, I estimate that extending the observing time by a factor of 2-3 will yield a statistically significant detection. Well within the reach of future TESS observations, this additional data may bring us closer to robustly detecting this effect than we have ever been. This thesis demonstrates the immense scientific value of space based, long baseline flare monitoring, and the versatility of flares as a carrier of information about the magnetism of star-planet systems. Many discoveries still lay in wait in the vast archives that Kepler and TESS have produced over the years. Flares are intense spotlights into the magnetic structures in star-planet systems that are otherwise far below our resolution limits. The ongoing TESS mission, and soon PLATO, will further open the door to in-depth understanding of small and dynamic scale magnetic fields on low mass stars, and the space weather environment they effect.}, language = {en} } @phdthesis{Thomas2022, author = {Thomas, Timon}, title = {Cosmic-ray hydrodynamics: theory, numerics, applications}, doi = {10.25932/publishup-56384}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563843}, school = {Universit{\"a}t Potsdam}, pages = {334}, year = {2022}, abstract = {Cosmic rays (CRs) are a ubiquitous and an important component of astrophysical environments such as the interstellar medium (ISM) and intracluster medium (ICM). Their plasma physical interactions with electromagnetic fields strongly influence their transport properties. Effective models which incorporate the microphysics of CR transport are needed to study the effects of CRs on their surrounding macrophysical media. Developing such models is challenging because of the conceptional, length-scale, and time-scale separation between the microscales of plasma physics and the macroscales of the environment. Hydrodynamical theories of CR transport achieve this by capturing the evolution of CR population in terms of statistical moments. In the well-established one-moment hydrodynamical model for CR transport, the dynamics of the entire CR population are described by a single statistical quantity such as the commonly used CR energy density. In this work, I develop a new hydrodynamical two-moment theory for CR transport that expands the well-established hydrodynamical model by including the CR energy flux as a second independent hydrodynamical quantity. I detail how this model accounts for the interaction between CRs and gyroresonant Alfv{\´e}n waves. The small-scale magnetic fields associated with these Alfv{\´e}n waves scatter CRs which fundamentally alters CR transport along large-scale magnetic field lines. This leads to the effects of CR streaming and diffusion which are both captured within the presented hydrodynamical theory. I use an Eddington-like approximation to close the hydrodynamical equations and investigate the accuracy of this closure-relation by comparing it to high-order approximations of CR transport. In addition, I develop a finite-volume scheme for the new hydrodynamical model and adapt it to the moving-mesh code Arepo. This scheme is applied using a simulation of a CR-driven galactic wind. I investigate how CRs launch the wind and perform a statistical analysis of CR transport properties inside the simulated circumgalactic medium (CGM). I show that the new hydrodynamical model can be used to explain the morphological appearance of a particular type of radio filamentary structures found inside the central molecular zone (CMZ). I argue that these harp-like features are synchrotron-radiating CRs which are injected into braided magnetic field lines by a point-like source such as a stellar wind of a massive star or a pulsar. Lastly, I present the finite-volume code Blinc that uses adaptive mesh refinement (AMR) techniques to perform simulations of radiation and magnetohydrodynamics (MHD). The mesh of Blinc is block-structured and represented in computer memory using a graph-based approach. I describe the implementation of the mesh graph and how a diffusion process is employed to achieve load balancing in parallel computing environments. Various test problems are used to verify the accuracy and robustness of the employed numerical algorithms.}, language = {en} } @article{Regenstein2022, author = {Regenstein, Wolfgang}, title = {Statistische Beschreibung des Resonanzenergietransfers in L{\"o}sungen}, edition = {2. Version}, doi = {10.25932/publishup-56597}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565977}, pages = {23}, year = {2022}, abstract = {Beim Resonanzenergietransfer werden Fotonen von einem angeregten Donator {\"u}ber einen Wechselwirkungsabstand auf einen Akzeptor {\"u}bertragen. Nach der quantenmechanischen Theorie von F{\"O}RSTER kann dieser Abstand mit Hilfe des {\"U}berlappungsintegrals von Fluoreszenzspektrum des Donators und Absorp-tionsspektrum des Akzeptors berechnet werden. Eine andere M{\"o}glichkeit der Bestimmung erh{\"a}lt man mit Hilfe von statistischen Modellen, die in einem {\"U}berblick zusammengestellt sind. Dabei kann der Abstand durch Auswertung der L{\"o}schkurve bestimmt werden. In dieser Arbeit wird dazu eine weitere statistische Variante der Bestimmung des Wechselwirkungsradius hinzugef{\"u}gt und an einem Beispiel ausf{\"u}hrlich demonstriert.}, language = {de} } @article{Regenstein2022, author = {Regenstein, Wolfgang}, title = {Statistische Beschreibung des Resonanzenergietransfers in L{\"o}sungen}, doi = {10.25932/publishup-56500}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565009}, pages = {23}, year = {2022}, abstract = {In resonance energy transfer, photons are transferred from an excited donor to an acceptor over an interaction distance. According to F{\"o}rster's quantum mechanical theory, this distance can be calculated using the overlap integral of the fluorescence spectrum of the donor and the absorption spectrum of the acceptor. Another possibility of determination is obtained with the help of statistical models, which are compiled in an overview. The distance can be determined by evaluating the extinction curve. In this work, a further statistical variant of the determination of the interaction radius is added and demonstrated in detail using an example.}, language = {de} } @article{Omel'chenko2022, author = {Omel'chenko, Oleh}, title = {Mathematical framework for breathing chimera states}, series = {Journal of nonlinear science}, volume = {32}, journal = {Journal of nonlinear science}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0938-8974}, doi = {10.1007/s00332-021-09779-1}, pages = {34}, year = {2022}, abstract = {About two decades ago it was discovered that systems of nonlocally coupled oscillators can exhibit unusual symmetry-breaking patterns composed of coherent and incoherent regions. Since then such patterns, called chimera states, have been the subject of intensive study but mostly in the stationary case when the coarse-grained system dynamics remains unchanged over time. Nonstationary coherence-incoherence patterns, in particular periodically breathing chimera states, were also reported, however not investigated systematically because of their complexity. In this paper we suggest a semi-analytic solution to the above problem providing a mathematical framework for the analysis of breathing chimera states in a ring of nonlocally coupled phase oscillators. Our approach relies on the consideration of an integro-differential equation describing the long-term coarse-grained dynamics of the oscillator system. For this equation we specify a class of solutions relevant to breathing chimera states. We derive a self-consistency equation for these solutions and carry out their stability analysis. We show that our approach correctly predicts macroscopic features of breathing chimera states. Moreover, we point out its potential application to other models which can be studied using the Ott-Antonsen reduction technique.}, language = {en} }