@article{UnuabonahGuenterWeberetal.2013, author = {Unuabonah, Emmanuel Iyayi and G{\"u}nter, Christina and Weber, Jens and Lubahn, Susanne and Taubert, Andreas}, title = {Hybrid Clay - a new highly efficient adsorbent for water treatment}, series = {ACS sustainable chemistry \& engineering}, volume = {1}, journal = {ACS sustainable chemistry \& engineering}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {2168-0485}, doi = {10.1021/sc400051y}, pages = {966 -- 973}, year = {2013}, abstract = {New hybrid clay adsorbent based on kaolinite clay and Carica papaya seeds with improved cation exchange capacity (CEC), rate of heavy metal ion uptake, and adsorption capacity for heavy metal ions were prepared. The CEC of the new material is ca. 75 meq/100 g in spite of the unexpectedly low surface area (approximate to 19 m(2)/g). Accordingly, the average particle size of the hybrid clay adsorbent decreased from over 200 to 100 pm. The hybrid clay adsorbent is a highly efficient adsorbent for heavy metals. With an initial metal concentration of 1 mg/L, the hybrid clay adsorbent reduces the Cd2+, Ni2+, and Pb2+ concentration in aqueous solution to <= 4, <= 7 and <= 20 mu g/L, respectively, from the first minute to over 300 min using a fixed bed containing 2 g of adsorbent and a flow rate of approximate to 7 mL/min. These values are (with the exception of Pb2+) in line with the WHO permissible limits for heavy metal ions. In a cocktail solution of Cd2+, and Ni2+, the hybrid clay shows a reduced rate of uptake but an increased adsorption capacity. The CEC data suggest that the adsorption of Pb2+, Cd2+, and Ni2+ on the hybrid clay adsorbent is essentially due to ion exchange. This hybrid clay adsorbent is prepared from materials that are abundant and by a simple means that is sustainable, easily recovered from aqueous solution, nonbiodegradable (unlike numerous biosorbent), and easily regenerated and is a highly efficient alternative to activated carbon for water treatment.}, language = {en} } @article{UnuabonahAgunbiadeAlfredetal.2017, author = {Unuabonah, Emmanuel Iyayi and Agunbiade, Foluso O. and Alfred, Moses O. and Adewumi, Thompson A. and Okoli, Chukwunonso P. and Omorogie, Martins O. and Akanbi, Moses O. and Ofomaja, Augustine E. and Taubert, Andreas}, title = {Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water}, series = {Journal of Cleaner Production}, volume = {164}, journal = {Journal of Cleaner Production}, publisher = {Elsevier}, address = {Oxford}, issn = {0959-6526}, doi = {10.1016/j.jclepro.2017.06.160}, pages = {652 -- 663}, year = {2017}, abstract = {New hybrid clay materials with good affinity for phosphate ions were developed from a combination of biomass-Carica papaya seeds (PS) and Musa paradisiaca (Plantain peels-PP), ZnCl2 and Kaolinite clay to produce iPS-HYCA and iPP-HYCA composite adsorbents respectively. Functionalization of these adsorbents with an organosilane produced NPS-HYCA and NPP-HYCA composite adsorbents. The pH(pzc) for the adsorbents were 7.83, 6.91, 7.66 and 6.55 for iPS-HYCA, NPS-HYCA, iPP-HYCA and NPP-HYCA respectively. Using the Brouer-Sotolongo isotherm model which best predict the adsorption capacity of composites for phosphate, iPP-HYCA, iPS-HYCA, NPP-HYCA, and NPS-HYCA composite adsorbents respectively. When compared with some commercial resins, the amino-functionalized adsorbents had better adsorption capacities. Furthermore, amino-functionalized adsorbents showed improved adsorption capacity and rate of phosphate uptake (as much as 40-fold), as well as retain 94\% (for NPS-HYCA) and 84.1\% (for NPP-HYCA) efficiency for phosphate adsorption after 5 adsorption-desorption cycles (96 h of adsorption time with 100 mg/L of phosphate ions) as against 37.5\% (for iPS-HYCA) and 35\% (for iPP-HYCA) under similar conditions. In 25 min desorption of phosphate ion attained equilibrium. These new amino-functionalized hybrid clay composite adsorbents, which were prepared by a simple means that is sustainable, have potentials for the efficient capture of phosphate ions from aqueous solution. They are quickly recovered from aqueous solution, non-biodegradable (unlike many biosorbent) with potentials to replace expensive adsorbents in the future. They have the further advantage of being useful in the recovery of phosphate for use in agriculture which could positively impact the global food security programme. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{UgwujaAdelowoOgunlajaetal.2019, author = {Ugwuja, Chidinma G. and Adelowo, Olawale O. and Ogunlaja, Aemere and Omorogie, Martins O. and Olukanni, Olumide D. and Ikhimiukor, Odion O. and Iermak, Ievgeniia and Kolawole, Gabriel A. and G{\"u}nter, Christina and Taubert, Andreas and Bodede, Olusola and Moodley, Roshila and Inada, Natalia M. and Camargo, Andrea S.S. de and Unuabonah, Emmanuel Iyayi}, title = {Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {28}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.9b01212}, pages = {25483 -- 25494}, year = {2019}, abstract = {This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries.}, language = {en} } @article{UchidaBinetAroraetal.2018, author = {Uchida, Ryusuke and Binet, Silvia and Arora, Neha and Jacopin, Gwenole and Alotaibi, Mohammad Hayal and Taubert, Andreas and Zakeeruddin, Shaik Mohammed and Dar, M. Ibrahim and Graetzel, Michael}, title = {Insights about the Absence of Rb Cation from the 3D Perovskite Lattice}, series = {Small}, volume = {14}, journal = {Small}, number = {36}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.201802033}, pages = {7}, year = {2018}, abstract = {Efficiencies >20\% are obtained from the perovskite solar cells (PSCs) employing Cs+ and Rb+ based perovskite compositions; therefore, it is important to understand the effect of these inorganic cations specifically Rb+ on the properties of perovskite structures. Here the influence of Cs+ and Rb+ is elucidated on the structural, morphological, and photophysical properties of perovskite structures and the photovoltaic performances of resulting PSCs. Structural, photoluminescence (PL), and external quantum efficiency studies establish the incorporation of Cs+ (x < 10\%) but amply rule out the possibility of Rb-incorporation into the MAPbI(3) (MA = CH3NH3+) lattice. Moreover, morphological studies and time-resolved PL show that both Cs+ and Rb+ detrimentally affect the surface coverage of MAPbI(3) layers and charge-carrier dynamics, respectively, by influencing nucleation density and by inducing nonradiative recombination. In addition, differential scanning calorimetry shows that the transition from orthorhombic to tetragonal phase occurring around 160 K requires more thermal energy for the Cs-containing MAPbI(3) systems compared to the pristine MAPbI(3). Investigation including mixed halide (I/Br) and mixed cation A-cation based compositions further confirms the absence of Rb+ from the 3D-perovskite lattice. The fundamental insights gained through this work will be of great significance to further understand highly promising perovskite compositions.}, language = {en} } @article{ThielKlamrothStrauchetal.2011, author = {Thiel, Kerstin and Klamroth, Tillmann and Strauch, Peter and Taubert, Andreas}, title = {On the interaction of ascorbic acid and the tetrachlorocuprate ion [CuCl4](2-) in CuCl nanoplatelet formation from an ionic liquid precursor (ILP)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {30}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c1cp20648f}, pages = {13537 -- 13543}, year = {2011}, abstract = {The formation of CuCl nanoplatelets from the ionic liquid precursor (ILP) butylpyridinium tetrachlorocuprate [C4Py](2)[CuCl4] using ascorbic acid as a reducing agent was investigated. In particular, electron paramagnetic resonance (EPR) spectroscopy was used to evaluate the interaction between ascorbic acid and the Cu(II) ion before reduction to Cu(I). EPR spectroscopy suggests that the [CuCl4](2-) ion in the neat IL is a distorted tetrahedron, consistent with DFT calculations. Addition of ascorbic acid leads to the removal of one chloride from the [CuCl4](2-) anion, as shown by DFT and the loss of symmetry by EPR. DFT furthermore suggests that the most stable adduct is formed when only one hydroxyl group of the ascorbic acid coordinates to the Cu(II) ion.}, language = {en} } @article{TentschertJungnickelReichardtetal.2014, author = {Tentschert, Jutta and Jungnickel, Harald and Reichardt, Philipp and Leube, Peter and Kretzschmar, Bernd and Taubert, Andreas and Luch, A.}, title = {Identification of nano clay in composite polymers}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {46}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.5546}, pages = {334 -- 336}, year = {2014}, abstract = {Industrialized food production is in urgent search for alternative packaging materials, which can serve the requirements of a globalized world in terms of longer product shelf lives, reduced freight weight to decrease transport costs, and better barrier functionality to preserve its freshness. Polymer materials containing organically modified nano clay particles as additives are one example for a new generation of packaging materials with specific barrier functionality to actually hit the market. Clay types used for these applications are aluminosilicates, which belong to the mineral group of phyllosilicates. These consist of nano-scaled thin platelets, which are organically modified with quaternary ammonium compounds acting as spacers between the different clay layers, thereby increasing the hydrophobicity of the mineral additive. A variety of different organically modified clays are already available, and the use as additive for food packaging materials is one important application. To ensure valid risk assessments of emerging nano composite polymers used in the food packaging industry, exact analytical characterization of the organically modified clay within the polymer matrix is of paramount importance. Time-of-flight SIMS in combination with multivariate statistical analysis was used to differentiate modified clay reference materials from another. Time-of-flight SIMS spectra of a reference polymer plate, which contained one specific nano clay composite, were acquired. For each modified clay additive, a set of characteristic diagnostic ions could be identified, which then was used to successfully assign unknown clay additives to the corresponding reference material. Thus, the described methodology could be used to define and characterize nano clay within polymer matrices. Copyright (c) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{TentschertDraudeJungnickeletal.2013, author = {Tentschert, J. and Draude, F. and Jungnickel, H. and Haase, A. and Mantion, Alexandre and Galla, S. and Thuenemann, Andreas F. and Taubert, Andreas and Luch, A. and Arlinghaus, H. F.}, title = {TOF-SIMS analysis of cell membrane changes in functional impaired human macrophages upon nanosilver treatment}, series = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, volume = {45}, journal = {Surface and interface analysis : an international journal devoted to the development and application of techniques for the analysis surfaces, interfaces and thin films}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0142-2421}, doi = {10.1002/sia.5155}, pages = {483 -- 485}, year = {2013}, abstract = {Silver nanoparticles (SNP) are among the most commercialized nanoparticles. Here, we show that peptide-coated SNP cause functional impairment of human macrophages. A dose-dependent inhibition of phagocytosis is observed after nanoparticle treatment, and pretreatment of cells with N-acetyl cysteine (NAC) can counteract the phagocytosis disturbances caused by SNP. Using the surface-sensitive mode of time-of-flight secondary ion mass spectrometry, in combination with multivariate statistical methods, we studied the composition of cell membranes in human macrophages upon exposure to SNP with and without NAC preconditioning. This method revealed characteristic changes in the lipid pattern of the cellular membrane outer leaflet in those cells challenged by SNP. Statistical analyses resulted in 19 characteristic ions, which can be used to distinguish between NAC pretreated and untreated macrophages. The present study discusses the assignments of surface cell membrane phospholipids for the identified ions and the resulting changes in the phospholipid pattern of treated cells. We conclude that the adverse effects in human macrophages caused by SNP can be partially reversed through NAC administration. Some alterations, however, remained.}, language = {en} } @article{TaubertStangeLietal.2012, author = {Taubert, Andreas and Stange, Franziska and Li, Zhonghao and Junginger, Mathias and G{\"u}nter, Christina and Neumann, Mike and Friedrich, Alwin}, title = {CuO nanoparticles from the Strongly Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide evaluation of the Ethanol Sensing Activity}, series = {ACS applied materials \& interfaces}, volume = {4}, journal = {ACS applied materials \& interfaces}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am201427q}, pages = {791 -- 795}, year = {2012}, abstract = {The sensing potential of CuO nanoparticles synthesized via. precipitation from a water/ionic liquid precursor (ILP) mixture was investigated. The particles have a moderate surface area of 66 m(2)/g after synthesis, which decreases upon thermal treatment to below 5 m(2)/g. Transmission electron microscopy confirms crystal growth upon annealing, likely due to sintering effects. The as-synthesized particles can be used for ethanol sensing. The respective sensors show fast response and recovery times of below 10 s and responses greater than 2.3 at 100 ppm of ethanol at 200 degrees C, which is higher than any CuO-based ethanol sensor described so far.}, language = {en} } @article{TaubertLoebbickeKirchneretal.2017, author = {Taubert, Andreas and L{\"o}bbicke, Ruben and Kirchner, Barbara and Leroux, Fabrice}, title = {First examples of organosilica-based ionogels}, series = {Beilstein journal of nanotechnology}, volume = {8}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.8.77}, pages = {736 -- 751}, year = {2017}, abstract = {The article describes the synthesis and properties of new ionogels for ion transport. A new preparation process using an organic linker, bis(3-(trimethoxysilyl) propyl) amine (BTMSPA), yields stable organosilica matrix materials. The second ionogel component, the ionic liquid 1-methyl-3-(4-sulfobutyl) imidazolium 4-methylbenzenesulfonate, [BmimSO(3)H][PTS], can easily be prepared with near-quantitative yields. [BmimSO(3)H][PTS] is the proton conducting species in the ionogel. By combining the stable organosilica matrix with the sulfonated ionic liquid, mechanically stable, and highly conductive ionogels with application potential in sensors or fuel cells can be prepared.}, language = {en} } @article{TaubertLerouxRabuetal.2019, author = {Taubert, Andreas and Leroux, Fabrice and Rabu, Pierre and de Zea Bermudez, Veronica}, title = {Advanced hybrid nanomaterials}, series = {Beilstein journal of nanotechnology}, volume = {10}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt am Main}, issn = {2190-4286}, doi = {10.3762/bjnano.10.247}, pages = {2563 -- 2567}, year = {2019}, language = {en} }