@article{DongesZouMarwanetal.2009, author = {Donges, Jonathan and Zou, Yong and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Complex networks in climate dynamics : comparing linear and nonlinear network construction methods}, issn = {1951-6355}, doi = {10.1140/epjst/e2009-01098-2}, year = {2009}, abstract = {Complex network theory provides a powerful framework to statistically investigate the topology of local and non- local statistical interrelationships, i.e. teleconnections, in the climate system. Climate networks constructed from the same global climatological data set using the linear Pearson correlation coefficient or the nonlinear mutual information as a measure of dynamical similarity between regions, are compared systematically on local, mesoscopic and global topological scales. A high degree of similarity is observed on the local and mesoscopic topological scales for surface air temperature fields taken from AOGCM and reanalysis data sets. We find larger differences on the global scale, particularly in the betweenness centrality field. The global scale view on climate networks obtained using mutual information offers promising new perspectives for detecting network structures based on nonlinear physical processes in the climate system.}, language = {en} } @article{KomalapriyaRomanoBlascoThieletal.2009, author = {Komalapriya, Chandrasekaran and Romano Blasco, Maria Carmen and Thiel, Marco and Schwarz, Udo and Kurths, J{\"u}rgen and Simonotto, Jennifer and Furman, Michael and Ditto, William L. and Carney, Paul R.}, title = {Analysis of high-resulution microelectrode EEG recordings in an animal model of spontaneous limbic seizures}, issn = {0218-1274}, doi = {10.1142/S0218127409023226}, year = {2009}, language = {en} } @article{ChenShangZhouetal.2009, author = {Chen, Maoyin and Shang, Yun and Zhou, Changsong and Wu, Ye and Kurths, J{\"u}rgen}, title = {Enhanced synchronizability in scale-free networks}, issn = {1054-1500}, doi = {10.1063/1.3062864}, year = {2009}, abstract = {We introduce a modified dynamical optimization coupling scheme to enhance the synchronizability in the scale- free networks as well as to keep uniform and converging intensities during the transition to synchronization. Further, the size of networks that can be synchronizable exceeds by several orders of magnitude the size of unweighted networks.}, language = {en} } @article{OrgisBrandSchwarzetal.2009, author = {Orgis, Thomas and Brand, Sascha and Schwarz, Udo and Handorf, D{\"o}rthe and Dethloff, Klaus and Kurths, J{\"u}rgen}, title = {Influence of interactive stratospheric chemistry on large-scale air mass exchange in a global circulation model}, issn = {1951-6355}, doi = {10.1140/epjst/e2009-01105-8}, year = {2009}, abstract = {A new globally uniform Lagrangian transport scheme for large ensembles of passive tracer particles is presented and applied to wind data from a coupled atmosphere-ocean climate model that includes interactive dynamical feedback with stratospheric chemistry. This feedback from the chemistry is found to enhance large-scale meridional air mass exchange in the northern winter stratosphere as well as intrusion of stratospheric air into the troposphere, where both effects are due to a weakened polar vortex.}, language = {en} } @misc{KoseskaZaikinKurthsetal.2009, author = {Koseska, Aneta and Zaikin, Alexey and Kurths, J{\"u}rgen and Garc{\´i}a-Ojalvo, Jordi}, title = {Timing cellular decision making under noise via cell-cell communication}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45260}, year = {2009}, abstract = {Many cellular processes require decision making mechanisms, which must act reliably even in the unavoidable presence of substantial amounts of noise. However, the multistable genetic switches that underlie most decision-making processes are dominated by fluctuations that can induce random jumps between alternative cellular states. Here we show, via theoretical modeling of a population of noise-driven bistable genetic switches, that reliable timing of decision-making processes can be accomplished for large enough population sizes, as long as cells are globally coupled by chemical means. In the light of these results, we conjecture that cell proliferation, in the presence of cell-cell communication, could provide a mechanism for reliable decision making in the presence of noise, by triggering cellular transitions only when the whole cell population reaches a certain size. In other words , the summation performed by the cell population would average out the noise and reduce its detrimental impact.}, language = {en} }