@article{SchmidtKrehl2011, author = {Schmidt, Bernd and Krehl, Stefan}, title = {A single precatalyst tandem RCM-allylic oxidation sequence}, series = {Chemical communications}, volume = {47}, journal = {Chemical communications}, number = {20}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c1cc11347j}, pages = {5879 -- 5881}, year = {2011}, abstract = {Ring closing metathesis of allyloxy styrenes and a subsequent Ru-catalyzed allylic oxidation can be combined to a tandem sequence that makes coumarins accessible using less active but more conveniently available first generation catalysts.}, language = {en} } @article{AstMuellerFlehretal.2011, author = {Ast, Sandra and M{\"u}ller, Holger and Flehr, Roman and Klamroth, Tillmann and Walz, Bernd and Holdt, Hans-J{\"u}rgen}, title = {High Na+ and K+-induced fluorescence enhancement of a pi-conjugated phenylaza-18-crown-6-triazol-substituted coumarin fluoroionophore}, series = {Chemical communications}, volume = {47}, journal = {Chemical communications}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c0cc04370b}, pages = {4685 -- 4687}, year = {2011}, abstract = {The new pi-conjugated 1,2,3-triazol-1,4-diyl fluoroionophore 1 generated via Cu(I) catalyzed [3 + 2] cycloaddition shows high fluorescence enhancement factors (FEF) in the presence of Na+ (FEF = 58) and K+ (FEF = 27) in MeCN and high selectivity towards K+ under simulated physiological conditions (160 mM K+ or Na+, respectively) with a FEF of 2.5 for K+.}, language = {en} } @article{deEspinosaMeier2011, author = {de Espinosa, Lucas Montero and Meier, Michael A. R.}, title = {Synthesis of star- and block-copolymers using ADMET head-to-tail selectivity during step-growth polymerization}, series = {Chemical communications}, volume = {47}, journal = {Chemical communications}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c0cc04161k}, pages = {1908 -- 1910}, year = {2011}, abstract = {Control over molecular architectures obtained via ADMET polymerization is limited by the step-growth nature of this technique. A new approach to this polycondensation method is described allowing for the synthesis of diblock and star-shaped polymers with molecular weight control by using the selectivity of olefin cross-metathesis between acrylates and terminal olefins.}, language = {en} } @article{SamereierBaumannMeyeretal.2011, author = {Samereier, Matthias and Baumann, Otto and Meyer, Irene and Gr{\"a}f, Ralph}, title = {Analysis of dictyostelium TACC reveals differential interactions with CP224 and unusual dynamics of dictyostelium microtubules}, series = {Cellular and molecular life sciences}, volume = {68}, journal = {Cellular and molecular life sciences}, number = {2}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-010-0453-0}, pages = {275 -- 287}, year = {2011}, abstract = {We have localized TACC to the microtubule-nucleating centrosomal corona and to microtubule plus ends. Using RNAi we proved that Dictyostelium TACC promotes microtubule growth during interphase and mitosis. For the first time we show in vivo that both TACC and XMAP215 family proteins can be differentially localized to microtubule plus ends during interphase and mitosis and that TACC is mainly required for recruitment of an XMAP215-family protein to interphase microtubule plus ends but not for recruitment to centrosomes and kinetochores. Moreover, we have now a marker to study dynamics and behavior of microtubule plus ends in living Dictyostelium cells. In a combination of live cell imaging of microtubule plus ends and fluorescence recovery after photobleaching (FRAP) experiments of GFP-alpha-tubulin cells we show that Dictyostelium microtubules are dynamic only in the cell periphery, while they remain stable at the centrosome, which also appears to harbor a dynamic pool of tubulin dimers.}, language = {en} } @article{KarlowatzScharhagRahnenfuehreretal.2011, author = {Karlowatz, Ruth-Jessica and Scharhag, J{\"u}rgen and Rahnenfuehrer, J{\"o}rg and Schneider, Ulrich and Jakob, Ernst and Kindermann, Wilfried and Zang, Klaus Dieter}, title = {Polymorphisms in the IGF1 signalling pathway including the myostatin gene are associated with left ventricular mass in male athletes}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {45}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, number = {1}, publisher = {BMJ Publ. Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsm.2008.050567}, pages = {36 -- 41}, year = {2011}, abstract = {Background Athlete's heart as an adaptation to long-time and intensive endurance training can vary considerably between individuals. Genetic polymorphisms in the cardiological relevant insulin-like growth factor 1 (IGF1) signalling pathway seem to have an essential influence on the extent of physiological hypertrophy. Objective Analysis of polymorphisms in the genes of IGF1, IGF1 receptor (IGF1R) and the negative regulator of the cardiac IGF1 signalling pathway, myostatin (MSTN), and their relation to left ventricular mass (LVM) of endurance athletes. Methods In 110 elite endurance athletes or athletes with a high amount of endurance training (75 males and 35 females) and 27 male controls, which were examined by echocardiographic imaging methods and ergometric exercise-testing, the genotypes of a cytosine-adenine repeat polymorphism in the promoter region of the IGF1 gene and a G/A substitution at position 3174 in the IGF1R gene were determined. Additionally, a mutation screen of the MSTN gene was performed. Results The polymorphisms in the IGF1 and the IGF1R gene showed a significant relation to the LVM for male (IGF1: p=0.003; IGF1R: p=0.01), but not for female athletes. The same applies to a previously unnoticed polymorphism in the 1 intron of the MSTN gene, whose deletion allele (AAA -> AA) appears to increase the myostatic effect (p=0.015). Moreover, combinations of the polymorphisms showed significant synergistic effects on the LVM of the male athletes. Conclusions The authors' results argue for the importance of polymorphisms in the IGF1 signalling pathway in combination with MSTN on the variant degree of physiological hypertrophy of male athletes.}, language = {en} } @article{ZaupaNeffePierceetal.2011, author = {Zaupa, Alessandro and Neffe, Axel T. and Pierce, Benjamin F. and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Influence of tyrosine-derived moieties and drying conditions on the formation of helices in gelatin}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {12}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm101029k}, pages = {75 -- 81}, year = {2011}, abstract = {The single and triple helical organization of protein chains strongly influences the mechanical properties of gelatin-based materials. A chemical method for obtaining different degrees of helical organization in gelatin is covalent functionalization, while a physical method for achieving the same goal is the variation of the drying conditions of gelatin solutions. Here we explored how the introduction of desaminotyrosine (DAT) and desaminotyrosyl tyrosine (DATT) linked to lysine residues of gelatin influenced the kinetics and thermodynamic equilibrium of the helicalization process of single and triple helices following different drying conditions. Drying at a temperature above. the helix-to-coil transition temperature of gelatin (T > T-c, called nu(short)) generally resulted in gelatins with relatively lower triple helical content (X-c,X-t = 1-2\%) than lower temperature drying (T < T-c, called nu(long)) (X-c,X-t = 8-10\%), where the DAT(T) functional groups generally disrupted helix formation. While different helical contents affected the thermal transition temperatures only slightly, the mechanical properties were strongly affected for swollen hydrogels (E = 4-13 kPa for samples treated by nu(long) and E = 120-700 kPa for samples treated by nu(short)). This study shows that side group functionalization and different drying conditions are viable options to control the helicalization and macroscopic properties of gelatin-based materials.}, language = {en} } @article{EnsslinSandnerMatthies2011, author = {Ensslin, Andreas and Sandner, Tobias M. and Matthies, Diethart}, title = {Consequences of ex situ cultivation of plants genetic diversity, fitness and adaptation of the monocarpic Cynoglossum officinale L. in botanic gardens}, series = {: an international journal}, volume = {144}, journal = {: an international journal}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0006-3207}, doi = {10.1016/j.biocon.2010.09.001}, pages = {272 -- 278}, year = {2011}, abstract = {Ex situ collections in botanic gardens have great potential in contributing to the conservation of rare plants. However, little is known about the effects of cultivation on the genetic diversity and fitness of garden populations, about genetic changes due to unconscious selection and potential adaptation to the artificial conditions. We compared the genetic variability and fitness of the rare, short-lived perennial Cynoglossum officinale from 12 botanic gardens and five natural populations in Germany. Genetic variability was assessed with eight nuclear microsatellites. Plants were grown in a common garden and performance was measured over 2 years. Mean genetic diversity was very similar in botanic garden and natural populations. However, four of the garden populations exhibited no genetic variability at all. Moreover, the genetic diversity of garden populations decreased with increasing duration of cultivation, indicating genetic drift. Plant performance from natural and garden populations in terms of growth, flowering and seed production was similar and in garden populations only seed mass was strongly related to genetic diversity. Several lines of evidence indicated genetic changes in garden populations in response to cultivation. Seed dormancy was strongly reduced in garden populations, and in response to nutrient addition garden plants increased the size of their main inflorescence, while wild plants increased the number of inflorescences. These changes could be maladaptive in nature and reduce the suitability of garden populations as a source for reintroductions. We suggest that botanic gardens should pay more attention to the problem of potential genetic changes in their plant collections.}, language = {en} } @article{KaylerKaiserGessleretal.2011, author = {Kayler, Zachary and Kaiser, Michael and Gessler, Arthur and Ellerbrock, Ruth H. and Sommer, Michael}, title = {Application of delta C-13 and delta N-15 isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms}, series = {Biogeosciences}, volume = {8}, journal = {Biogeosciences}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-8-2895-2011}, pages = {2895 -- 2906}, year = {2011}, abstract = {Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of delta C-13 and delta N-15 isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the delta C-13 and delta N-15 isotopic signatures from two organic matter (OM) fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM occluded in micro-structures found in the chemical extraction residue (OM(ER)). Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY)-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY) through Ca2+ interactions. In general, we found the forest soils to contain on average 10\% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY) and the ratio of soil organic carbon content to soil surface area (SOC/SSA). This indicates that the OM(PY) fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition of the OM(ER) fraction, we conclude that the OM in this fraction from both land use types have undergone a different pathway to stabilization that does not involve microbial processing, which may include OM which is highly protected within soil micro-structures.}, language = {en} } @article{HundertmarkDimovaLengefeldetal.2011, author = {Hundertmark, Michaela and Dimova, Rumiana and Lengefeld, Jan and Seckler, Robert and Hincha, Dirk K.}, title = {The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1808}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2010.09.010}, pages = {446 -- 453}, year = {2011}, abstract = {Intrinsically disordered proteins (IDPs) constitute a substantial part of cellular proteomes. late embryogenesis abundant (LEA) proteins are mostly predicted to be IDPs associated with dehydration tolerance in many plant, animal and bacterial species. Their functions, however, are largely unexplored and also their structure and interactions with potential target molecules have only recently been experimentally investigated in a small number of proteins. Here, we report on the structure and interactions with membranes of the Pfam LEA_1 protein LEA18 from the higher plant Arabidopsis thaliana. This functionally uncharacterized positively charged protein specifically aggregated and destabilized negatively charged liposomes. Isothermal titration calorimetry showed binding of the protein to both charged and uncharged membranes. LEA18 alone was largely unstructured in solution. While uncharged membranes had no influence on the secondary structure of LEA18, the protein partially folded into beta-sheet structure in the presence of negatively charged liposomes. These data suggest that LEA18 does not function as a membrane stabilizing protein, as suggested for other LEA proteins. Instead, a possible function of LEA18 could be the composition-dependent modulation of membrane stability, e.g., during signaling or vesicle-mediated transport.}, language = {en} } @misc{WischerhoffBadiLaschewskyetal.2011, author = {Wischerhoff, Erik and Badi, Nezha and Laschewsky, Andr{\´e} and Lutz, Jean-Francois}, title = {Smart polymer surfaces concepts and applications in biosciences}, series = {Advances in polymer science = Fortschritte der Hochpolymeren-Forschung}, volume = {240}, journal = {Advances in polymer science = Fortschritte der Hochpolymeren-Forschung}, number = {1}, editor = {B{\"o}rner, Hans Gerhard and Lutz, JF}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-20154-7}, issn = {0065-3195}, doi = {10.1007/12_2010_88}, pages = {1 -- 33}, year = {2011}, abstract = {Stimuli-responsive macromolecules (i.e., pH-, thermo-, photo-, chemo-, and bioresponsive polymers) have gained exponential importance in materials science, nanotechnology, and biotechnology during the last two decades. This chapter describes the usefulness of this class of polymer for preparing smart surfaces (e.g., modified planar surfaces, particles surfaces, and surfaces of three-dimensional scaffolds). Some efficient pathways for connecting these macromolecules to inorganic, polymer, or biological substrates are described. In addition, some emerging bioapplications of smart polymer surfaces (e.g., antifouling surfaces, cell engineering, protein chromatography, tissue engineering, biochips, and bioassays) are critically discussed.}, language = {en} }