@misc{XieHuangTitiricietal.2014, author = {Xie, Zai-Lai and Huang, Xing and Titirici, Maria-Magdalena and Taubert, Andreas}, title = {Mesoporous graphite nanoflakes via ionothermal carbonization of fructose and their use in dye removal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99427}, year = {2014}, abstract = {The large-scale green synthesis of graphene-type two-dimensional materials is still challenging. Herein, we describe the ionothermal synthesis of carbon-based composites from fructose in the iron-containing ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III), [Bmim][FeCl4] serving as solvent, catalyst, and template for product formation. The resulting composites consist of oligo-layer graphite nanoflakes and iron carbide particles. The mesoporosity, strong magnetic moment, and high specific surface area of the composites make them attractive for water purification with facile magnetic separation. Moreover, Fe3Cfree graphite can be obtained via acid etching, providing access to fairly large amounts of graphite material. The current approach is versatile and scalable, and thus opens the door to ionothermal synthesis towards the larger-scale synthesis of materials that are, although not made via a sustainable process, useful for water treatment such as the removal of organic molecules.}, language = {en} } @article{XieHuangTaubert2014, author = {Xie, Zai-Lai and Huang, Xing and Taubert, Andreas}, title = {DyeIonogels: proton-responsive ionogels based on a dye-ionic liquid exhibiting reversible color change}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201303016}, pages = {2837 -- 2843}, year = {2014}, abstract = {Transparent, ion-conducting, and flexible ionogels based on the room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide [Bmim][N(Tf)(2)], the dye-IL (DIL) 1-butyl-3-methylimidazolium methyl orange [Bmim][MO], and poly(methylmethacrylate) (PMMA) are prepared. Upon IL incorporation the thermal stability of the PMMA matrix significantly increases from 220 to 280 degrees C. The ionogels have a relatively high ionic conductivity of 10(-4) S cm(-1) at 373 K. Most importantly, the ionogels exhibit a strong and reversible color change when exposed to aqueous or organic solutions containing protons or hydroxide ions. The resulting material is thus a prototype of soft multifunctional matter featuring ionic conductivity, easy processability, response to changes in the environment, and a strong readout signal, the color change, that could be used in optical data storage or environmental sensing.}, language = {en} } @article{WojnarowskaLangeTaubertetal.2021, author = {Wojnarowska, Zaneta and Lange, Alyna and Taubert, Andreas and Paluch, Marian}, title = {Ion and proton transport in aqueous/nonaqueous acidic tonic liquids for fuel-cell applications-insight from high-pressure dielectric studies}, series = {ACS applied materials \& interfaces / American Chemical Society}, volume = {13}, journal = {ACS applied materials \& interfaces / American Chemical Society}, number = {26}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.1c06260}, pages = {30614 -- 30624}, year = {2021}, abstract = {The use of acidic ionic liquids and solids as electrolytes in fuel cells is an emerging field due to their efficient proton conductivity and good thermal stability. Despite multiple reports describing conducting properties of acidic ILs, little is known on the charge-transport mechanism in the vicinity of liquid-glass transition and the structural factors governing the proton hopping. To address these issues, we studied two acidic imidazolium-based ILs with the same cation, however, different anions-bulk tosylate vs small methanesulfonate. High-pressure dielectric studies of anhydrous and water-saturated materials performed in the close vicinity of T-g have revealed significant differences in the charge-transport mechanism in these two systems being undetectable at ambient conditions. Thereby, we demonstrated the effect of molecular architecture on proton hopping, being crucial in the potential electrochemical applications of acidic ILs.}, language = {en} } @misc{WinterThielZabeletal.2013, author = {Winter, Alette and Thiel, Kerstin and Zabel, Andr{\´e} and Klamroth, Tillmann and P{\"o}ppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II) - structure and EPR spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95012}, pages = {1019 -- 1030}, year = {2013}, abstract = {We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4]2- moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium)tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4]2- anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g∥ and g⊥, could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations.}, language = {en} } @article{WinterThielZabeletal.2014, author = {Winter, Alette and Thiel, Kerstin and Zabel, Andre and Klamroth, Tillmann and Poeppl, Andreas and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas and Strauch, Peter}, title = {Tetrahalidocuprates(II) - structure and EPR spectroscopy. Part 2: tetrachloridocuprates(II)}, series = {New journal of chemistry}, volume = {38}, journal = {New journal of chemistry}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c3nj01039b}, pages = {1019 -- 1030}, year = {2014}, abstract = {We present and discuss the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of five tetrachloridocuprate(II) complexes to supply a useful tool for the structural characterisation of the [CuCl4](2-) moiety in the liquid state, for example in ionic liquids, or in solution. Bis(benzyltriethylammonium)-, bis(trimethylphenylammonium)-, bis(ethyltriphenylphosphonium)-, bis(benzyltriphenylphosphonium)-, and bis(tetraphenylarsonium) tetrachloridocuprate(II) were synthesised and characterised by elemental, IR, EPR and X-ray analyses. The results of the crystallographic analyses show distorted tetrahedral coordination geometry of all [CuCl4](2-) anions in the five complexes and prove that all investigated complexes are stabilised by hydrogen bonds of different intensities. Despite the use of sterically demanding ammonium, phosphonium and arsonium cations to obtain the separation of the paramagnetic Cu(II) centres for EPR spectroscopy no hyperfine structure was observed in the EPR spectra but the principal values of the electron Zeeman tensor, g(parallel to) and g(perpendicular to), could be determined. With these EPR data and the crystallographic parameters we were able to carry out a correlation study to anticipate the structural situation of tetrachloridocuprates in different physical states. This correlation is in good agreement with DFT calculations.}, language = {en} } @misc{ViouxTaubert2014, author = {Vioux, Andr{\´e} and Taubert, Andreas}, title = {Ionic liquids 2014 and selected papers from ILMAT 2013}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1055}, issn = {1866-8372}, doi = {10.25932/publishup-47506}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475062}, pages = {6}, year = {2014}, language = {en} } @unpublished{ViouxTaubert2014, author = {Vioux, Andre and Taubert, Andreas}, title = {Ionic liquids 2014 and selected papers from ILMAT 2013: highlighting the ever-growing potential of ionic liquids}, series = {International journal of molecular sciences}, volume = {15}, journal = {International journal of molecular sciences}, number = {12}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms151222815}, pages = {22815 -- 22818}, year = {2014}, language = {en} } @misc{UnuabonahTaubert2014, author = {Unuabonah, Emmanuel Iyayi and Taubert, Andreas}, title = {Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment}, series = {Applied clay science : an international journal on the application and technology of clays and clay minerals}, volume = {99}, journal = {Applied clay science : an international journal on the application and technology of clays and clay minerals}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-1317}, doi = {10.1016/j.clay.2014.06.016}, pages = {83 -- 92}, year = {2014}, abstract = {A class of adsorbents currently receiving growing attention is the clay-polymer nanocomposite (CPN) adsorbents. CPNs effectively treat water by adsorption and flocculation of both inorganic and organic micropollutants from aqueous solutions. Some of these CPNs - when modified with biocides - also have the ability to efficiently remove microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans from water. CPNs are far more easily recovered from aqueous media than neat clay. They also exhibit far better treatment times than either polymer or clay adsorbents. They have higher adsorption capacity and better life cycles compared with clay alone. CPNs therefore show an excellent potential as highly efficient water and waste treatment agents. This article reviews the various CPNs that have been prepared recently and used as adsorbents in the removal of micropollutants (inorganic, organic and biological) from aqueous solutions. A special focus is placed on CPNs that are not only interesting from an academic point of view but also effectively reduce the concentration of micropollutants in water to safe limits and also on new developments bordering on CPN use as water treatment agent that have not yet realized their full potential. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{UnuabonahOluOwolabiTaubertetal.2013, author = {Unuabonah, Emmanuel Iyayi and Olu-Owolabi, Bamidele I. and Taubert, Andreas and Omolehin, Elizabeth B. and Adebowale, Kayode O.}, title = {SAPK a novel composite resin for water treatment with very high Zn2+, Cd2+, and Pb2+ adsorption capacity}, series = {Industrial \& engineering chemistry research}, volume = {52}, journal = {Industrial \& engineering chemistry research}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {0888-5885}, doi = {10.1021/ie3024577}, pages = {578 -- 585}, year = {2013}, abstract = {A new sulfonated aniline-modified poly(vinyl alcohol)/K-feldspar (SAPK) composite was prepared. The cation-exchange capacity of the composite was found to be S times that of neat feldspar. The specific surface area and point of zero charge also changed significantly upon modification, from 15.6 +/- 0.1 m(2)/g and 2.20 (K-feldspar) to 73.6 +/- 0.3 m(2)/g and 1.91 (SAPK). Zn2+, Cd2+, and Pb2+ adsorption was found to be largely independent of pH, and the metal adsorption rate on SAPK was higher than that on neat feldspar. This particularly applies to the initial adsorption rates. The adsorption process involves both film and pore diffusion; film diffusion initially controls the adsorption. The Freundlich and Langmuir models were found to fit metal-ion adsorption on SAPK most accurately. Adsorption on neat feldspar was best fitted with a Langmuir model, indicating the formation of adsorbate monolayers. Both pure feldspar and SAPK showed better selectivity for Pb2+ than for Cd2+ or Zn2+.}, language = {en} } @article{UnuabonahNoeskeWeberetal.2019, author = {Unuabonah, Emmanuel Iyayi and N{\"o}ske, Robert and Weber, Jens and G{\"u}nter, Christina and Taubert, Andreas}, title = {New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water}, series = {Beilstein journal of nanotechnology}, volume = {10}, journal = {Beilstein journal of nanotechnology}, publisher = {Beilstein-Institut zur F{\"o}rderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {2190-4286}, doi = {10.3762/bjnano.10.11}, pages = {119 -- 131}, year = {2019}, abstract = {A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between approximate to 150 and 300 m(2)/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 degrees C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible.}, language = {en} }