@article{VandenWyngaertGanzertSetoetal.2022, author = {Van den Wyngaert, Silke and Ganzert, Lars and Seto, Kensuke and Rojas-Jimenez, Keilor and Agha, Ramsy and Berger, Stella A. and Woodhouse, Jason and Padisak, Judit and Wurzbacher, Christian and Kagami, Maiko and Grossart, Hans-Peter}, title = {Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits}, series = {ISME journal}, volume = {16}, journal = {ISME journal}, number = {9}, publisher = {Springer Nature}, address = {London}, issn = {1751-7362}, doi = {10.1038/s41396-022-01267-y}, pages = {2242 -- 2254}, year = {2022}, abstract = {Zoosporic fungi of the phylum Chytridiomycota (chytrids) regularly dominate pelagic fungal communities in freshwater and marine environments. Their lifestyles range from obligate parasites to saprophytes. Yet, linking the scarce available sequence data to specific ecological traits or their host ranges constitutes currently a major challenge. We combined 28 S rRNA gene amplicon sequencing with targeted isolation and sequencing approaches, along with cross-infection assays and analysis of chytrid infection prevalence to obtain new insights into chytrid diversity, ecology, and seasonal dynamics in a temperate lake. Parasitic phytoplankton-chytrid and saprotrophic pollen-chytrid interactions made up the majority of zoosporic fungal reads. We explicitly demonstrate the recurrent dominance of parasitic chytrids during frequent diatom blooms and saprotrophic chytrids during pollen rains. Distinct temporal dynamics of diatom-specific parasitic clades suggest mechanisms of coexistence based on niche differentiation and competitive strategies. The molecular and ecological information on chytrids generated in this study will aid further exploration of their spatial and temporal distribution patterns worldwide. To fully exploit the power of environmental sequencing for studies on chytrid ecology and evolution, we emphasize the need to intensify current isolation efforts of chytrids and integrate taxonomic and autecological data into long-term studies and experiments.}, language = {en} } @article{GorinScherzKorostetal.2021, author = {Gorin, Vladislav A. and Scherz, Mark D. and Korost, Dmitry V. and Poyarkov, Nikolay A.}, title = {Consequences of parallel miniaturisation in Microhylinae (Anura, Microhylidae), with the description of a new genus of diminutive South East Asian frogs}, series = {Zoosystematics and evolution : Mitteilungen aus dem Museum f{\"u}r Naturkunde in Berlin}, volume = {97}, journal = {Zoosystematics and evolution : Mitteilungen aus dem Museum f{\"u}r Naturkunde in Berlin}, number = {1}, publisher = {Pensoft Publishers}, address = {Sofia}, issn = {1860-0743}, doi = {10.3897/zse.97.57968}, pages = {21 -- 54}, year = {2021}, abstract = {The genus Microhyla Tschudi, 1838 includes 52 species and is one of the most diverse genera of the family Microhylidae, being the most species-rich taxon of the Asian subfamily Microhylinae. The recent, rapid description of numerous new species of Microhyla with complex phylogenetic relationships has made the taxonomy of the group especially challenging. Several recent phylogenetic studies suggested paraphyly of Microhyla with respect to Glyphoglossus Gunther, 1869, and revealed three major phylogenetic lineages of mid-Eocene origin within this assemblage. However, comprehensive works assessing morphological variation among and within these lineages are absent. In the present study we investigate the generic taxonomy of Microhyla-Glyphoglossus assemblage based on a new phylogeny including 57 species, comparative morphological analysis of skeletons from cleared-and-stained specimens for 23 species, and detailed descriptions of generalized osteology based on volume-rendered micro-CT scans for five speciesal-together representing all major lineages within the group. The results confirm three highly divergent and well-supported clades that correspond with external and osteological morphological characteristics, as well as respective geographic distribution. Accordingly, acknowledging ancient divergence between these lineages and their significant morphological differentiation, we propose to consider these three lineages as distinct genera: Microhyla sensu stricto, Glyphoglossus, and a newly described genus, Nanohyla gen. nov.}, language = {en} } @article{SchmidtReilJeskeetal.2021, author = {Schmidt, Sabrina and Reil, Daniela and Jeske, Kathrin and Drewes, Stephan and Rosenfeld, Ulrike and Fischer, Stefan and Spierling, Nastasja G. and Labutin, Anton and Heckel, Gerald and Jacob, Jens and Ulrich, Rainer G. and Imholt, Christian}, title = {Spatial and temporal dynamics and molecular evolution of Tula orthohantavirus in German vole populations}, series = {Viruses / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Viruses / Molecular Diversity Preservation International (MDPI)}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {10.3390/v13061132}, pages = {17}, year = {2021}, abstract = {Tula orthohantavirus (TULV) is a rodent-borne hantavirus with broad geographical distribution in Europe. Its major reservoir is the common vole (Microtus arvalis), but TULV has also been detected in closely related vole species. Given the large distributional range and high amplitude population dynamics of common voles, this host-pathogen complex presents an ideal system to study the complex mechanisms of pathogen transmission in a wild rodent reservoir. We investigated the dynamics of TULV prevalence and the subsequent potential effects on the molecular evolution of TULV in common voles of the Central evolutionary lineage. Rodents were trapped for three years in four regions of Germany and samples were analyzed for the presence of TULV-reactive antibodies and TULV RNA with subsequent sequence determination. The results show that individual (sex) and population-level factors (abundance) of hosts were significant predictors of local TULV dynamics. At the large geographic scale, different phylogenetic TULV clades and an overall isolation-by-distance pattern in virus sequences were detected, while at the small scale (<4 km) this depended on the study area. In combination with an overall delayed density dependence, our results highlight that frequent, localized bottleneck events for the common vole and TULV do occur and can be offset by local recolonization dynamics.}, language = {en} } @article{BelluardoScherzSantosetal.2022, author = {Belluardo, Francesco and Scherz, Mark D. and Santos, Barbara and Andreone, Franco and Antonelli, Alexandre and Glaw, Frank and Munoz-Pajares, A. Jesus and Randrianirina, Jasmin E. and Raselimanana, Achille P. and Vences, Miguel and Crottini, Angelica}, title = {Molecular taxonomic identification and species-level phylogeny of the narrow-mouthed frogs of the genus Rhombophryne (Anura: Microhylidae: Cophylinae) from Madagascar}, series = {Systematics and biodiversity}, volume = {20}, journal = {Systematics and biodiversity}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1477-2000}, doi = {10.1080/14772000.2022.2039320}, pages = {1 -- 13}, year = {2022}, abstract = {The study of diamond frogs (genus Rhombophryne, endemic to Madagascar) has been historically hampered by the paucity of available specimens, because of their low detectability in the field. Over the last 10 years, 13 new taxa have been described, and 20 named species are currently recognized. Nevertheless, undescribed diversity within the genus is probably large, calling for a revision of the taxonomic identification of published records and an update of the known distribution of each lineage. Here we generate DNA sequences of the mitochondrial 16S rRNA gene of all specimens available to us, revise the genetic data from public databases, and report all deeply divergent mitochondrial lineages of Rhombophryne identifiable from these data. We also generate a multi-locus dataset (including five mitochondrial and eight nuclear markers; 9844 bp) to infer a species-level phylogenetic hypothesis for the diversification of this genus and revise the distribution of each lineage. We recognize a total of 10 candidate species, two of which are identified here for the first time. The genus Rhombophryne is here proposed to be divided into six main species groups, and phylogenetic relationships among some of them are not fully resolved. These frogs are primarily distributed in northern Madagascar, and most species are known from only few localities. A previous record of this genus from the Tsingy de Bemaraha (western Madagascar) is interpreted as probably due to a mislabelling and should not be considered further unless confirmed by new data. By generating this phylogenetic hypothesis and providing an updated distribution of each lineage, our findings will facilitate future species descriptions, pave the way for evolutionary studies, and provide valuable information for the urgent conservation of diamond frogs.}, language = {en} } @article{GarbulowskiSmolinskaCabuketal.2022, author = {Garbulowski, Mateusz and Smolinska, Karolina and {\c{C}}abuk, Uğur and Yones, Sara A. and Celli, Ludovica and Yaz, Esma Nur and Barrenas, Fredrik and Diamanti, Klev and Wadelius, Claes and Komorowski, Jan}, title = {Machine learning-based analysis of glioma grades reveals co-enrichment}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2072-6694}, doi = {10.3390/cancers14041014}, pages = {19}, year = {2022}, abstract = {Simple Summary Gliomas are heterogenous types of cancer, therefore the therapy should be personalized and targeted toward specific pathways. We developed a methodology that corrected strong batch effects from The Cancer Genome Atlas datasets and estimated glioma grade-specific co-enrichment mechanisms using machine learning. Our findings created hypotheses for annotations, e.g., pathways, that should be considered as therapeutic targets. Gliomas develop and grow in the brain and central nervous system. Examining glioma grading processes is valuable for improving therapeutic challenges. One of the most extensive repositories storing transcriptomics data for gliomas is The Cancer Genome Atlas (TCGA). However, such big cohorts should be processed with caution and evaluated thoroughly as they can contain batch and other effects. Furthermore, biological mechanisms of cancer contain interactions among biomarkers. Thus, we applied an interpretable machine learning approach to discover such relationships. This type of transparent learning provides not only good predictability, but also reveals co-predictive mechanisms among features. In this study, we corrected the strong and confounded batch effect in the TCGA glioma data. We further used the corrected datasets to perform comprehensive machine learning analysis applied on single-sample gene set enrichment scores using collections from the Molecular Signature Database. Furthermore, using rule-based classifiers, we displayed networks of co-enrichment related to glioma grades. Moreover, we validated our results using the external glioma cohorts. We believe that utilizing corrected glioma cohorts from TCGA may improve the application and validation of any future studies. Finally, the co-enrichment and survival analysis provided detailed explanations for glioma progression and consequently, it should support the targeted treatment.}, language = {en} } @article{AgarwalHamidizadehBier2023, author = {Agarwal, Saloni and Hamidizadeh, Mojdeh and Bier, Frank Fabian}, title = {Detection of reverse transcriptase LAMP-amplified nucleic acid from oropharyngeal viral swab samples using biotinylated DNA probes through a lateral flow assay}, series = {Biosensors : open access journal}, volume = {13}, journal = {Biosensors : open access journal}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios13110988}, pages = {15}, year = {2023}, abstract = {This study focuses on three key aspects: (a) crude throat swab samples in a viral transport medium (VTM) as templates for RT-LAMP reactions; (b) a biotinylated DNA probe with enhanced specificity for LFA readouts; and (c) a digital semi-quantification of LFA readouts. Throat swab samples from SARS-CoV-2 positive and negative patients were used in their crude (no cleaning or pre-treatment) forms for the RT-LAMP reaction. The samples were heat-inactivated but not treated for any kind of nucleic acid extraction or purification. The RT-LAMP (20 min processing time) product was read out by an LFA approach using two labels: FITC and biotin. FITC was enzymatically incorporated into the RT-LAMP amplicon with the LF-LAMP primer, and biotin was introduced using biotinylated DNA probes, specifically for the amplicon region after RT-LAMP amplification. This assay setup with biotinylated DNA probe-based LFA readouts of the RT-LAMP amplicon was 98.11\% sensitive and 96.15\% specific. The LFA result was further analysed by a smartphone-based IVD device, wherein the T-line intensity was recorded. The LFA T-line intensity was then correlated with the qRT-PCR Ct value of the positive swab samples. A digital semi-quantification of RT-LAMP-LFA was reported with a correlation coefficient of R2 = 0.702. The overall RT-LAMP-LFA assay time was recorded to be 35 min with a LoD of three RNA copies/µL (Ct-33). With these three advancements, the nucleic acid testing-point of care technique (NAT-POCT) is exemplified as a versatile biosensor platform with great potential and applicability for the detection of pathogens without the need for sample storage, transportation, or pre-processing.}, language = {en} } @article{NumbergerZoccaratoWoodhouseetal.2022, author = {Numberger, Daniela and Zoccarato, Luca and Woodhouse, Jason Nicholas and Ganzert, Lars and Sauer, Sascha and Garc{\´i}a M{\´a}rquez, Jaime Ricardo and Domisch, Sami and Grossart, Hans-Peter and Greenwood, Alex}, title = {Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {845}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2022.157321}, pages = {13}, year = {2022}, abstract = {Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urban-ization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sedi-ments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urban-ization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.}, language = {en} } @article{ZavorkaBlancoChaguacedaetal.2023, author = {Zavorka, Libor and Blanco, Andreu and Chaguaceda, Fernando and Cucherousset, Julien and Killen, Shaun S. and Lienart, Camilla and Mathieu-Resuge, Margaux and Nemec, Pavel and Pilecky, Matthias and Scharnweber, Inga Kristin and Twining, Cornelia W. and Kainz, Martin J.}, title = {The role of vital dietary biomolecules in eco-evo-devo dynamics}, series = {Trends in ecology and evolution}, volume = {38}, journal = {Trends in ecology and evolution}, number = {1}, publisher = {Cell Press}, address = {Cambridge}, issn = {0169-5347}, doi = {10.1016/j.tree.2022.08.010}, pages = {72 -- 84}, year = {2023}, abstract = {The physiological dependence of animals on dietary intake of vitamins, amino acids, and fatty acids is ubiquitous. Sharp differences in the availability of these vital dietary biomolecules among different resources mean that consumers must adopt a range of strategies to meet their physiological needs. We review the emerging work on omega-3 long-chain polyunsaturated fatty acids, focusing predominantly on predator-prey interactions, to illustrate that trade-off between capacities to consume resources rich in vital biomolecules and internal synthesis capacity drives differences in phenotype and fitness of consumers. This can then feedback to impact ecosystem functioning. We outline how focus on vital dietary biomolecules in eco-eco-devo dynamics can improve our understanding of anthropogenic changes across multiple levels of biological organization.}, language = {en} } @article{GrdseloffBouldayRoedeletal.2023, author = {Grdseloff, Nastasja and Boulday, Gwenola and Roedel, Claudia J. and Otten, Cecile and Vannier, Daphne Raphaelle and Cardoso, Cecile and Faurobert, Eva and Dogra, Deepika and Tournier-Lasserve, Elisabeth and Abdelilah-Seyfried, Salim}, title = {Impaired retinoic acid signaling in cerebral cavernous malformations}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, number = {1}, publisher = {Nature Portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-023-31905-0}, pages = {11}, year = {2023}, abstract = {The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.}, language = {en} } @article{StueblerKloftHuisinga2023, author = {St{\"u}bler, Sabine and Kloft, Charlotte and Huisinga, Wilhelm}, title = {Cell-level systems biology model to study inflammatory bowel diseases and their treatment options}, series = {CPT: pharmacometrics \& systems pharmacology}, volume = {12}, journal = {CPT: pharmacometrics \& systems pharmacology}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {2163-8306}, doi = {10.1002/psp4.12932}, pages = {690 -- 705}, year = {2023}, abstract = {To help understand the complex and therapeutically challenging inflammatory bowel diseases (IBDs), we developed a systems biology model of the intestinal immune system that is able to describe main aspects of IBD and different treatment modalities thereof. The model, including key cell types and processes of the mucosal immune response, compiles a large amount of isolated experimental findings from literature into a larger context and allows for simulations of different inflammation scenarios based on the underlying data and assumptions. In the context of a large and diverse virtual IBD population, we characterized the patients based on their phenotype (in contrast to healthy individuals, they developed persistent inflammation after a trigger event) rather than on a priori assumptions on parameter differences to a healthy individual. This allowed to reproduce the enormous diversity of predispositions known to lead to IBD. Analyzing different treatment effects, the model provides insight into characteristics of individual drug therapy. We illustrate for anti-TNF-alpha therapy, how the model can be used (i) to decide for alternative treatments with best prospects in the case of nonresponse, and (ii) to identify promising combination therapies with other available treatment options.}, language = {en} }