@article{MaslinPancostWilsonetal.2012, author = {Maslin, Mark A. and Pancost, Richard D. and Wilson, Katy E. and Lewis, Jonathan and Trauth, Martin H.}, title = {Three and half million year history of moisture availability of South West Africa evidence from ODP site 1085 biomarker records}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {317}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2011.12.009}, pages = {41 -- 47}, year = {2012}, abstract = {Ocean Drilling Program Site 1085 provides a continuous marine sediment record off southern South West Africa for at least the last three and half million years. The n-alkane partial derivative(13) C record from this site records changes in past vegetation and provides an indication of the moisture availability of SW Africa during this time period. Very little variation, and no apparent trend, is observed in the n-alkane delta C-13 record, suggesting stable long-term conditions despite significant changes in East African tectonics and global climate. Slightly higher n-alkane delta C-13 values occur between 3.5 and 2.7 Ma suggesting slightly drier conditions than today. Between 2.5 and 2.7 Ma there is a shift to more negative n-alkane delta C-13 values suggesting slightly wetter conditions during a similar to 0.2 Ma episode that coincides with the intensification of Northern Hemisphere Glaciation (iNHG). From 2.5 to 0.4 Ma the n-alkane delta C-13 values are very consistent, varying by less than +/- 0.5 parts per thousand and suggesting little or no long-term change in the moisture availability of South West Africa over the last 2.5 million years. This is in contrast to the long-term drying trend observed further north offshore from the Namib Desert and in East Africa. A comparison of the climate history of these regions suggests that Southern Africa may have been an area of long-term stability over the last 3.5 Myrs.}, language = {en} } @article{StoofLeichsenringEppTrauthetal.2012, author = {Stoof-Leichsenring, Kathleen Rosemarie and Epp, Laura Saskia and Trauth, Martin H. and Tiedemann, Ralph}, title = {Hidden diversity in diatoms of Kenyan Lake Naivasha a genetic approach detects temporal variation}, series = {Molecular ecology}, volume = {21}, journal = {Molecular ecology}, number = {8}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0962-1083}, doi = {10.1111/j.1365-294X.2011.05412.x}, pages = {1918 -- 1930}, year = {2012}, abstract = {This study provides insights into the morphological and genetic diversity in diatoms occurring in core sediments from tropical lakes in Kenya. We developed a genetic survey technique specific for diatoms utilizing a short region (7667 bp) of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene as genetic barcode. Our analyses (i) validated the use of rbcL as a barcoding marker for diatoms, applied to sediment samples, (ii) showed a significant correlation between the results obtained by morphological and molecular data and (iii) indicated temporal variation in diatom assemblages on the inter- and intra-specific level. Diatom assemblages from a short core from Lake Naivasha show a drastic shift over the last 200 years, as littoral species (e.g. Navicula) are replaced by more planktonic ones (e.g. Aulacoseira). Within that same period, we detected periodic changes in the respective frequencies of distinct haplotype groups of Navicula, which coincide with wet and dry periods of Lake Naivasha between 1820 and 1938 AD. Our genetic analyses on historical lake sediments revealed inter- and intra-specific variation in diatoms, which is partially hidden behind single morphotypes. The occurrence of particular genetic lineages is probably correlated with environmental factors.}, language = {en} } @article{FoersterJungingerLangkampetal.2012, author = {F{\"o}rster, Verena and Junginger, Annett and Langkamp, Oliver and Gebru, Tsige and Asrat, Asfawossen and Umer, Mohammed and Lamb, Henry F. and Wennrich, Volker and Rethemeyer, Janet and Nowaczyk, Norbert and Trauth, Martin H. and Sch{\"a}bitz, Frank}, title = {Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {274}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, number = {19}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2012.06.028}, pages = {25 -- 37}, year = {2012}, abstract = {East African paleoenvironments are highly variable, marked by extreme fluctuations in moisture availability, which has far-reaching implications for the origin, evolution and dispersal of Homo sapiens in and beyond the region. This paper presents results from a pilot core from the Chew Bahir basin in southern Ethiopia that records the climatic history of the past 45 ka, with emphasis on the African Humid Period (AHP, similar to 15-5 ka calBP). Geochemical, physical and biological indicators show that Chew Bahir responded to climatic fluctuations on millennial to centennial timescales, and to the precessional cycle, since the Last Glacial Maximum. Potassium content of the sediment appears to be a reliable proxy for aridity, showing that Chew Bahir reacted to the insolation-controlled humidity increase of the AHP with a remarkably abrupt onset and a gradual termination, framing a sharply defined arid phase (similar to 12.8-11.6 ka calBP) corresponding to the Younger Dryas chronozone. The Chew Bahir record correlates well with low- and high-latitude paleoclimate records, demonstrating that the site responded to regional and global climate changes.}, language = {en} } @article{BorchardtTrauth2012, author = {Borchardt, Sven and Trauth, Martin H.}, title = {Remotely-sensed evapotranspiration estimates for an improved hydrological modeling of the early holocene mega-lake Suguta, northern Kenya Rift}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {361}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {22}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.07.009}, pages = {14 -- 20}, year = {2012}, abstract = {The actual evapotranspiration is an important, but difficult to determine, element in the water balance of lakes and their catchment areas. Reliable data on evapotranspiration are not available for most lake basins for which paleoclimate reconstructions and modeling have been performed, particularly those in remote parts of Africa. We have used thermal infrared multispectral data for 14 ASTER scenes from the TERRA satellite to estimate the actual evapotranspiration in the 12,800 km(2) catchment of the Suguta Valley, northern Kenya Rift Evidence from sediments and paleo-shorelines indicates that, during the African Humid Period (AHP, 14.8 to 5.5 kyrs BP), this valley contained a large lake, 280 m deep and covering similar to 2200 km(2), which has now virtually disappeared. Evapotranspiration estimates for the Suguta Basin were generated using the Surface Energy Balance Algorithm for Land (SEBAL). Climate data required for the model were extracted from a high-resolution gridded dataset obtained from the Climatic Research Unit (East Anglia, UK). Results suggest significant spatial variations in evapotranspiration within the catchment area (ranging from 450 mm/yr in the basin to the north to 2000 mm/yr in more elevated areas) and precipitation that was similar to 20\% higher during the AHP than in recent times. These results are in agreement with other estimates of paleo-precipitation in East Africa. The extreme response of the lake system (similar to 280 m greater water depth than today, and a lake surface area of 2200 km(2)) to only moderately higher precipitation illustrates the possible sensitivity of this area to future climate change.}, language = {en} }