@article{HerfurthdeMolinaWielandetal.2012, author = {Herfurth, Christoph and de Molina, Paula Malo and Wieland, Christoph and Rogers, Sarah and Gradzielski, Michael and Laschewsky, Andr{\´e}}, title = {One-step RAFT synthesis of well-defined amphiphilic star polymers and their self-assembly in aqueous solution}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {6}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c2py20126g}, pages = {1606 -- 1617}, year = {2012}, abstract = {Multifunctional chain transfer agents for RAFT polymerisation were designed for the one-step synthesis of amphiphilic star polymers. Thus, hydrophobically end-capped 3- and 4-arm star polymers, as well as linear ones for reference, were made of the hydrophilic monomer N,N-dimethylacrylamide (DMA) in high yield with molar masses up to 150 000 g mol(-1), narrow molar mass distribution (PDI <= 1.2) and high end group functionality (similar to 90\%). The associative telechelic polymers form transient networks of interconnected aggregates in aqueous solution, thus acting as efficient viscosity enhancers and rheology modifiers, eventually forming hydrogels. The combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and rheology experiments revealed that several molecular parameters control the structure and therefore the physical properties of the aggregates. In addition to the size of the hydrophilic block (maximum length for connection) and the length of the hydrophobic alkyl chain ends (stickiness), the number of arms (functionality) proved to be a key parameter.}, language = {en} }