@phdthesis{Yin2010, author = {Yin, Fan}, title = {Mathematic approaches for the calibration of the CHAMP satellite magnetic field measurements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41201}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission to study the earth's gravity field, magnetic field and upper atmosphere. Thanks to the good condition of the satellite so far, the planned 5 years mission is extended to year 2009. The satellite provides continuously a large quantity of measurement data for the purpose of Earth study. The measurements of the magnetic field are undertaken by two Fluxgate Magnetometers (vector magnetometer) and one Overhauser Magnetometer (scalar magnetometer) flown on CHAMP. In order to ensure the quality of the data during the whole mission, the calibration of the magnetometers has to be performed routinely in orbit. The scalar magnetometer serves as the magnetic reference and its readings are compared with the readings of the vector magnetometer. The readings of the vector magnetometer are corrected by the parameters that are derived from this comparison, which is called the scalar calibration. In the routine processing, these calibration parameters are updated every 15 days by means of scalar calibration. There are also magnetic effects coming from the satellite which disturb the measurements. Most of them have been characterized during tests before launch. Among them are the remanent magnetization of the spacecraft and fields generated by currents. They are all considered to be constant over the mission life. The 8 years of operation experience allow us to investigate the long-term behaviors of the magnetometers and the satellite systems. According to the investigation, it was found that for example the scale factors of the FGM show obvious long-term changes which can be described by logarithmic functions. The other parameters (offsets and angles between the three components) can be considered constant. If these continuous parameters are applied for the FGM data processing, the disagreement between the OVM and the FGM readings is limited to \pm1nT over the whole mission. This demonstrates, the magnetometers on CHAMP exhibit a very good stability. However, the daily correction of the parameter Z component offset of the FGM improves the agreement between the magnetometers markedly. The Z component offset plays a very important role for the data quality. It exhibits a linear relationship with the standard deviation of the disagreement between the OVM and the FGM readings. After Z offset correction, the errors are limited to \pm0.5nT (equivalent to a standard deviation of 0.2nT). We improved the corrections of the spacecraft field which are not taken into account in the routine processing. Such disturbance field, e.g. from the power supply system of the satellite, show some systematic errors in the FGM data and are misinterpreted in 9-parameter calibration, which brings false local time related variation of the calibration parameters. These corrections are made by applying a mathematical model to the measured currents. This non-linear model is derived from an inversion technique. If the disturbance field of the satellite body are fully corrected, the standard deviation of scalar error \triangle B remains about 0.1nT. Additionally, in order to keep the OVM readings a reliable standard, the imperfect coefficients of the torquer current correction for the OVM are redetermined by solving a minimization problem. The temporal variation of the spacecraft remanent field is investigated. It was found that the average magnetic moment of the magneto-torquers reflects well the moment of the satellite. This allows for a continuous correction of the spacecraft field. The reasons for the possible unknown systemic error are discussed in this thesis. Particularly, both temperature uncertainties and time errors have influence on the FGM data. Based on the results of this thesis the data processing of future magnetic missions can be designed in an improved way. In particular, the upcoming ESA mission Swarm can take advantage of our findings and provide all the auxiliary measurements needed for a proper recovery of the ambient magnetic field.}, language = {en} } @article{GomezGardenesZamoraLopezMorenoetal.2010, author = {Gomez-Garde{\~n}es, Jes{\´u}s and Zamora-Lopez, Gorka and Moreno, Yamir and Arenas, Alexandre}, title = {From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex}, issn = {1932-6203}, doi = {10.1371/journal.pone.0012313}, year = {2010}, abstract = {Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.}, language = {en} } @article{ItohKurths2010, author = {Itoh, Naoki and Kurths, J{\"u}rgen}, title = {Change-point detection of climate time series by nonparametric method}, issn = {2078-0958}, year = {2010}, abstract = {In one of the data mining techniques, change-point detection is of importance in evaluating time series measured in real world. For decades this technique has been developed as a nonlinear dynamics. We apply the method for detecting the change points, Singular Spectrum Transformation (SST), to the climate time series. To know where the structures of climate data sets change can reveal a climate background. In this paper we discuss the structures of precipitation data in Kenya and Wrangel Island (Arctic land) by using the SST.}, language = {en} } @article{ArenasBorgeHolthoeferGomezetal.2010, author = {Arenas, Alexandre and Borge-Holthoefer, Javier and Gomez, Sergio and Zamora-Lopez, Gorka}, title = {Optimal map of the modular structure of complex networks}, issn = {1367-2630}, doi = {10.1088/1367-2630/12/5/053009}, year = {2010}, abstract = {The modular structure is pervasive in many complex networks of interactions observed in natural, social and technological sciences. Its study sheds light on the relation between the structure and the function of complex systems. Generally speaking, modules are islands of highly connected nodes separated by a relatively small number of links. Every module can have the contributions of links from any node in the network. The challenge is to disentangle these contributions to understand how the modular structure is built. The main problem is that the analysis of a certain partition into modules involves, in principle, as much data as the number of modules times the number of nodes. To confront this challenge, here we first define the contribution matrix, the mathematical object containing all the information about the partition of interest, and then we use truncated singular value decomposition to extract the best representation of this matrix in a plane. The analysis of this projection allows us to scrutinize the skeleton of the modular structure, revealing the structure of individual modules and their interrelations.}, language = {en} } @article{HellandGapelyukSuhrbieretal.2010, author = {Helland, Vanessa Carolina Figuera and Gapelyuk, Andrej and Suhrbier, Alexander and Riedl, Maik and Penzel, Thomas and Kurths, J{\"u}rgen and Wessel, Niels}, title = {Investigation of an automatic sleep stage classification by means of multiscorer hypnogram}, issn = {0026-1270}, doi = {10.3414/Me09-02-0052}, year = {2010}, abstract = {Objectives: Scoring sleep visually based on polysomnography is an important but time-consuming element of sleep medicine. Where-as computer software assists human experts in the assignment of sleep stages to polysomnogram epochs, their performance is usually insufficient. This study evaluates the possibility to fully automatize sleep staging considering the reliability of the sleep stages available from human expert sleep scorers. Methods: We obtain features from EEG, ECG and respiratory signals of polysomnograms from ten healthy subjects. Using the sleep stages provided by three human experts, we evaluate the performance of linear discriminant analysis on the entire polysomnogram and:only on epochs where the three experts agree in their-sleep stage scoring. Results: We show that in polysomnogram intervals, to which all three scorers assign the same sleep stage, our algorithm achieves 90\% accuracy. This high rate of agreement with the human experts is accomplished with only a small set of three frequency features from the EEG. We increase-the performance to 93\% by including ECG and respiration features. In contrast, on intervals of ambiguous sleep stage, the sleep stage classification obtained from our algorithm, agrees with the human consensus scorer in approximately 61\%. Conclusions: These findings suggest that machine classification is highly consistent with human sleep staging and that error in the algorithm's assignments is rather a problem of lack of well-defined criteria for human experts to judge certain polysomnogram epochs than an insufficiency of computational procedures}, language = {en} } @article{BraunDitlevsenKurthsetal.2010, author = {Braun, Holger and Ditlevsen, Peter D. and Kurths, J{\"u}rgen and Mudelsee, Manfred}, title = {Limitations of red noise in analysing Dansgaard-Oeschger events}, issn = {1814-9324}, doi = {10.5194/cp-6-85-2010}, year = {2010}, abstract = {During the last glacial period, climate records from the North Atlantic region exhibit a pronounced spectral component corresponding to a period of about 1470 years, which has attracted much attention. This spectral peak is closely related to the recurrence pattern of Dansgaard-Oeschger (DO) events. In previous studies a red noise random process, more precisely a first-order autoregressive (AR1) process, was used to evaluate the statistical significance of this peak, with a reported significance of more than 99\%. Here we use a simple mechanistic two-state model of DO events, which itself was derived from a much more sophisticated ocean-atmosphere model of intermediate complexity, to numerically evaluate the spectral properties of random (i.e., solely noise-driven) events. This way we find that the power spectral density of random DO events differs fundamentally from a simple red noise random process. These results question the applicability of linear spectral analysis for estimating the statistical significance of highly non-linear processes such as DO events. More precisely, to enhance our scientific understanding about the trigger of DO events, we must not consider simple "straw men" as, for example, the AR1 random process, but rather test against realistic alternative descriptions.}, language = {en} } @article{MarwanKurths2009, author = {Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Comment on "Stochastic analysis of recurrence plots with applications to the detection of deterministic signals" by Rohde et al. : [Physica D 237 (2008) 619-629]}, issn = {0167-2789}, doi = {10.1016/j.physd.2009.04.018}, year = {2009}, abstract = {In the recent article "Stochastic analysis of recurrence plots with applications to the detection of deterministic signals" (Physica D 237 (2008) 619-629), Rohde et al. stated that the performance of RQA in order to detect deterministic signals would be below traditional and well-known detectors. However, we have concerns about such a general statement. Based on our own studies we cannot confirm their conclusions. Our findings suggest that the measures of complexity provided by RQA are useful detectors outperforming well-known traditional detectors, in particular for the detection of signals of complex systems, with phase differences or signals modified due to the measurement process.}, language = {en} } @article{FlorenceDahlemAlmeidaetal.2009, author = {Florence, Gerson and Dahlem, Markus A. and Almeida, Ant{\^o}nio-Carlos G. and Bassani, Jos{\´e} W. M. and Kurths, J{\"u}rgen}, title = {The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression : a computational study}, issn = {0022-5193}, doi = {10.1016/j.jtbi.2009.01.032}, year = {2009}, abstract = {Experimental evidences point Out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular tons) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K+](o) and a decrease of extracellular calcium concentration [Ca2+](o) which raises the neuronal excitability. However, whether the high [K+](o) triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K+](o) and zero [Ca2+](o) were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na+-K+ pump, ion diffusion and glial buffering. Within these Conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na+- K+ pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K+ dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K+](o), transiting to an elevated state of neuronal excitability. Effects of high [K+](o), are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K+](o) creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K+](o) by outward K+ flow depresses K+ Currents in a positive feedback way. At the last stage, due to the depression of K+ currents, the Na+-K+ pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K+](o) dynamics may play a fundamental role in these abnormal oscillatory patterns.}, language = {en} } @article{WesselRiedlKurths2009, author = {Wessel, Niels and Riedl, Maik and Kurths, J{\"u}rgen}, title = {Is the normal heart rate "chaotic" due to respiration?}, issn = {1054-1500}, doi = {10.1063/1.3133128}, year = {2009}, abstract = {The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96\%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: " Is the normal heart rate 'chaotic' due to respiration?"}, language = {en} } @article{WuLiChenetal.2009, author = {Wu, Ye and Li, Ping and Chen, Maoyin and Xiao, Jinghua and Kurths, J{\"u}rgen}, title = {Response of scale-free networks with community structure to external stimuli}, issn = {0378-4371}, doi = {10.1016/j.physa.2009.03.037}, year = {2009}, abstract = {The response of scale-free networks with community structure to external stimuli is studied. By disturbing some nodes with different strategies, it is shown that the robustness of this kind of network can be enhanced due to the existence of communities in the networks. Some of the response patterns are found to coincide with topological communities. We show that such phenomena also occur in the cat brain network which is an example of a scale-free like network with community structure. Our results provide insights into the relationship between network topology and the functional organization in complex networks from another viewpoint.}, language = {en} }