@article{CarpiAndersonBaueretal.2015, author = {Carpi, Federico and Anderson, Iain and Bauer, Siegfried and Frediani, Gabriele and Gallone, Giuseppe and Gei, Massimiliano and Graaf, Christian and Jean-Mistral, Claire and Kaal, William and Kofod, Guggi and Kollosche, Matthias and Kornbluh, Roy and Lassen, Benny and Matysek, Marc and Michel, Silvain and Nowak, Stephan and Pei, Qibing and Pelrine, Ron and Rechenbach, Bjorn and Rosset, Samuel and Shea, Herbert}, title = {Standards for dielectric elastomer transducers}, series = {Smart materials and structures}, volume = {24}, journal = {Smart materials and structures}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0964-1726}, doi = {10.1088/0964-1726/24/10/105025}, pages = {25}, year = {2015}, abstract = {Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.}, language = {en} } @article{WacheMcCarthyRisseetal.2015, author = {Wache, Remi and McCarthy, Denis N. and Risse, Sebastian and Kofod, Guggi}, title = {Rotary Motion Achieved by New Torsional Dielectric Elastomer Actuators Design}, series = {IEEE ASME transactions on mechatronics}, volume = {20}, journal = {IEEE ASME transactions on mechatronics}, number = {2}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1083-4435}, doi = {10.1109/TMECH.2014.2301633}, pages = {975 -- 977}, year = {2015}, abstract = {This paper reports a new way to produce a rotation motion actuated by dielectric elastomer actuators. Two specific electrode designs have been developed and the rotation of the actuator centers has been demonstrated and measured. At low strains, the rotation shows a nearly quadratic dependence with the voltage. This behavior was used to compare the performances between the two proposed designs. Among the tested configurations, a maximal rotation of 10 degrees was achieved.}, language = {en} } @article{KolloscheKofodSuoetal.2015, author = {Kollosche, Matthias and Kofod, Guggi and Suo, Zhigang and Zhu, Jian}, title = {Temporal evolution and instability in a viscoelastic dielectric elastomer}, series = {Journal of the mechanics and physics of solids}, volume = {76}, journal = {Journal of the mechanics and physics of solids}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-5096}, doi = {10.1016/j.jmps.2014.11.013}, pages = {47 -- 64}, year = {2015}, abstract = {Dielectric elastomer transducers are being developed for applications in stretchable electronics, tunable optics, biomedical devices, and soft machines. These transducers exhibit highly nonlinear electromechanical behavior: a dielectric membrane under voltage can form wrinkles, undergo snap-through instability, and suffer electrical breakdown. We investigate temporal evolution and instability by conducting a large set of experiments under various prestretches and loading rates, and by developing a model that allows viscoelastic instability. We use the model to classify types of instability, and map the experimental observations according to prestretches and loading rates. The model describes the entire set of experimental observations. A new type of instability is discovered, which we call wrinkle-to-wrinkle transition. A flat membrane at a critical voltage forms wrinkles and then, at a second critical voltage, snaps into another state of winkles of a shorter wavelength. This study demonstrates that viscoelasticity is essential to the understanding of temporal evolution and instability of dielectric elastomers. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{StoyanovKolloscheRisseetal.2013, author = {Stoyanov, Hristiyan and Kollosche, Matthias and Risse, Sebastian and Wache, Remi and Kofod, Guggi}, title = {Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles}, series = {Advanced materials}, volume = {25}, journal = {Advanced materials}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201202728}, pages = {578 -- 583}, year = {2013}, abstract = {Block copolymer elastomer conductors (BEC) are mixtures of block copolymers grafted with conducting polymers, which are found to support very large strains, while retaining a high level of conductivity. These novel materials may find use in stretchable electronics. The use of BEC is demonstrated in a capacitive strain sensor and in an artificial muscle of the dielectric elastomer actuator type, supporting more than 100\% actuation strain and capacity strain sensitivity up to 300\%.}, language = {en} } @article{LaflammeKolloscheConnoretal.2013, author = {Laflamme, Simon and Kollosche, Matthias and Connor, Jerome J. and Kofod, Guggi}, title = {Robust flexible capacitive surface sensor for structural health monitoring applications}, series = {Journal of engineering mechanics}, volume = {139}, journal = {Journal of engineering mechanics}, number = {7}, publisher = {American Society of Civil Engineers}, address = {Reston}, issn = {0733-9399}, doi = {10.1061/(ASCE)EM.1943-7889.0000530}, pages = {879 -- 885}, year = {2013}, abstract = {Early detection of possible defects in civil infrastructure is vital to ensuring timely maintenance and extending structure life expectancy. The authors recently proposed a novel method for structural health monitoring based on soft capacitors. The sensor consisted of an off-the-shelf flexible capacitor that could be easily deployed over large surfaces, the main advantages being cost-effectiveness, easy installation, and allowing simple signal processing. In this paper, a capacitive sensor with tailored mechanical and electrical properties is presented, resulting in greatly improved robustness while retaining measurement sensitivity. The sensor is fabricated from a thermoplastic elastomer mixed with titanium dioxide and sandwiched between conductive composite electrodes. Experimental verifications conducted on wood and concrete specimens demonstrate the improved robustness, as well as the ability of the sensing method to diagnose and locate strain.}, language = {en} } @article{McCarthyStoyanovRychkovetal.2012, author = {McCarthy, Denis N. and Stoyanov, Hristiyan and Rychkov, Dmitry and Ragusch, Huelya and Melzer, Michael and Kofod, Guggi}, title = {Increased permittivity nanocomposite dielectrics by controlled interfacial interactions}, series = {Composites science and technology}, volume = {72}, journal = {Composites science and technology}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0266-3538}, doi = {10.1016/j.compscitech.2012.01.026}, pages = {731 -- 736}, year = {2012}, abstract = {The use of nanoparticles in polymer composite dielectrics has promised great improvements, but useful results have been elusive. Here, the importance of the interfacial interactions between the nanoparticles and the polymer matrix are investigated in TiO2 nanocomposites for dielectric materials using surface functionalisation. The interface is observed to dominate the nanocomposite properties and leads to a threefold increase in permittivity at volume fractions as low as 10\%. Surface functionalisation of the filler nanoparticles with silanes allows control of this interface, avoiding significant degradation of the other important material properties, particularly electrical breakdown strength, and resulting in a material that is demonstrated successfully as an active material in a dielectric elastomer actuator application with increased work output compared to the pure polymer. Although further permittivity increases are observed when the interface regions have formed a percolation network, the other material properties deteriorate. The observation of percolation behaviour allows the interface thickness to be estimated.}, language = {en} } @article{KolloscheZhuSuoetal.2012, author = {Kollosche, Matthias and Zhu, Jian and Suo, Zhigang and Kofod, Guggi}, title = {Complex interplay of nonlinear processes in dielectric elastomers}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {85}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.85.051801}, pages = {4}, year = {2012}, abstract = {A combination of experiment and theory shows that dielectric elastomers exhibit complex interplay of nonlinear processes. Membranes of a dielectric elastomer are prepared in various states of prestretches by using rigid clamps and mechanical forces. Upon actuation by voltage, some membranes form wrinkles followed by snap-through instability, others form wrinkles without the snap-through instability, and still others fail by local instability without forming wrinkles. Membranes surviving these nonlinear processes are found to attain a constant dielectric strength, independent of the state of prestretches. Giant voltage-induced stretch of 3.6 is attained.}, language = {en} } @article{ZhuKolloscheLuetal.2012, author = {Zhu, Jian and Kollosche, Matthias and Lu, Tongqing and Kofod, Guggi and Suo, Zhigang}, title = {Two types of transitions to wrinkles in dielectric elastomers}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {34}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm26034d}, pages = {8840 -- 8846}, year = {2012}, abstract = {A membrane of a dielectric elastomer coated with compliant electrodes may form wrinkles as the applied voltage is ramped up. We present a combination of experiment and theory to investigate the transition to wrinkles using a clamped membrane subject to a constant force and a voltage ramp. Two types of transitions are identified. In type-I transition, the voltage-stretch curve is N-shaped, and flat and wrinkled regions coexist in separate areas of the membrane. The type-I transition progresses by nucleation of small wrinkled regions, followed by the growth of the wrinkled regions at the expense of the flat regions, until the entire membrane is wrinkled. By contrast, in type-II transition, the voltage-stretch curve is monotonic, and the entire flat membrane becomes wrinkled with no nucleation barrier. The two types of transitions are analogous to the first and the second order phase transitions. While the type-I transition is accompanied by a jump in the vertical displacement, type-II transition is accompanied by a continuous change in the vertical displacement. Such transitions may enable applications in muscle-like actuation and energy harvesting, where large deformation and large energy of conversion are desired.}, language = {en} } @article{VukicevicVukovicStoyanovetal.2012, author = {Vukicevic, Radovan and Vukovic, Ivana and Stoyanov, Hristiyan and Korwitz, Andreas and Pospiech, Doris and Kofod, Guggi and Loos, Katja and ten Brinke, Gerrit and Beuermann, Sabine}, title = {Poly(vinylidene fluoride)-functionalized single-walled carbon nanotubes for the preparation of composites with improved conductivity}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c2py20166f}, pages = {2261 -- 2265}, year = {2012}, abstract = {The surface of single-walled carbon nanotubes (SWCNTs) was functionalized with azide-terminated poly(vinylidene fluoride) (PVDF). Functionalization was confirmed by dispersibility, Raman spectroscopy, and thermogravimetric analyses. Raman spectra show disordering of the SWCNTs, thus, strongly suggesting that PVDF was covalently attached to SWCNTs. Functionalized SWCNTs were mixed with commercially available PVDF in a twin-screw extruder and thin films were obtained by melt-pressing. Films containing 0.5 and 1 wt\% PVDF-functionalized SWCNTs exhibited significantly improved electrical conductivity compared to PVDF films containing pristine SWCNTs.}, language = {en} } @article{RisseKussmaulKruegeretal.2012, author = {Risse, Sebastian and Kussmaul, Bj{\"o}rn and Kr{\"u}ger, Hartmut and Kofod, Guggi}, title = {A versatile method for enhancement of electromechanical sensitivity of silicone elastomers}, series = {RSC Advances}, volume = {2}, journal = {RSC Advances}, number = {24}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c2ra21541a}, pages = {9029 -- 9035}, year = {2012}, abstract = {Dielectric elastomer actuators (DEAs) draw their function from their dielectric and mechanical properties. The paper describes the fabrication and various properties of molecularly grafted silicone elastomer films. This was achieved by addition of high-dipole molecular co-substituents to off-the-shelf silicone elastomer kits, Elastosil RT 625 and Sylgard 184 by Wacker and Dow Corning, respectively. Strong push-pull dipoles were chemically grafted to both polymer networks during a one step film formation process. All manufactured films were characterized using (13) C-NMR and FT-IR spectroscopy, confirming a successful attachment of the dipoles to the silicone network. Differential scanning calorimetry (DSC) results showed that grafted dipoles were distributed homogeneously throughout the material avoiding the formation of nano-scale aggregates. The permittivity increased with the amount of dipole at all frequencies, while the Young's modulus and electrical breakdown strength were reduced. Actuation strain measurements in the pure shear configuration independently confirmed the increase in electromechanical sensitivity. The ability to enhance electromechanical properties of off-the-shelf materials could strongly expand the range of actuator properties available to researchers and end-users.}, language = {en} }