@article{DallmeyerKleinenClaussenetal.2022, author = {Dallmeyer, Anne and Kleinen, Thomas and Claussen, Martin and Weitzel, Nils and Cao, Xianyong and Herzschuh, Ulrike}, title = {The deglacial forest conundrum}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {[London]}, issn = {2041-1723}, doi = {10.1038/s41467-022-33646-6}, pages = {10}, year = {2022}, abstract = {How fast the Northern Hemisphere (NH) forest biome tracks strongly warming climates is largely unknown. Regional studies reveal lags between decades and millennia. Here we report a conundrum: Deglacial forest expansion in the NH extra-tropics occurs approximately 4000 years earlier in a transient MPI-ESM1.2 simulation than shown by pollen-based biome reconstructions. Shortcomings in the model and the reconstructions could both contribute to this mismatch, leaving the underlying causes unresolved. The simulated vegetation responds within decades to simulated climate changes, which agree with pollen-independent reconstructions. Thus, we can exclude climate biases as main driver for differences. Instead, the mismatch points at a multi-millennial disequilibrium of the NH forest biome to the climate signal. Therefore, the evaluation of time-slice simulations in strongly changing climates with pollen records should be critically reassessed. Our results imply that NH forests may be responding much slower to ongoing climate changes than Earth System Models predict.
Deglacial forest expansion in the Northern Hemisphere poses a conundrum: Model results agree with the climate signal but are several millennia ahead of reconstructed forest dynamics. The underlying causes remain unsolved.}, language = {en} } @article{LiWangHerzschuhetal.2022, author = {Li, Zhen and Wang, Yongbo and Herzschuh, Ulrike and Cao, Xianyong and Ni, Jian and Zhao, Yan}, title = {Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000 years}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {604}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2022.111190}, pages = {12}, year = {2022}, abstract = {Reconstruction of past vegetation change is critical for better understanding the potential impact of future global change on the fragile alpine ecosystems of the Qinghai-Tibetan Plateau (QTP). In this paper, pollen assemblages comprising 58 records from the QTP, spanning the past 15 kyrs, were collected to reconstruct biome compositions using a standard approach. Six forest biomes were identified mainly on the southeastern plateau, exhibiting a pattern of gradual expansion along the eastern margin during early to mid-Holocene times. The alpine meadow biome was separately identified based on an updated scheme, and showed notable westward expansions towards lower latitudes and higher altitudes during early Holocene times. Consistent patterns of migration could also be identified for the alpine steppe biome, which moved eastward during the late Holocene after 4 ka. As the dominant biome type, temperate steppe was distributed widely over the QTP with minor migration patterns, except for a progressive expansion to lower altitudes in the late Holocene times. The desert biome was inferred mainly as covering the northwestern plateau and the Qaidam Basin, in relatively restricted areas. The spatial distribution of the reconstructed biomes represent the large-scale vegetation gradient on the QTP. Monsoonal precipitation expressed predominant controls on the development of alpine ecosystems, while the variations in desert vegetation responded to regional moisture brought by the mid-latitude Westerlies. Temperature changes played relatively minor roles in the variations of alpine vegetation, but exerted more significant impacts on the forest biomes.}, language = {en} } @article{HerzschuhBoehmerLietal.2022, author = {Herzschuh, Ulrike and B{\"o}hmer, Thomas and Li, Chenzhi and Cao, Xianyong and H{\´e}bert, Rapha{\"e}l and Dallmeyer, Anne and Telford, Richard J. and Kruse, Stefan}, title = {Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics during the Holocene}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {22}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2022GL099730}, pages = {11}, year = {2022}, abstract = {Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} } @article{LiPostlBoehmeretal.2022, author = {Li, Chenzhi and Postl, Alexander K. and B{\"o}hmer, Thomas and Cao, Xianyong and Dolman, Andrew M. and Herzschuh, Ulrike}, title = {Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0)}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {3}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-14-1331-2022}, pages = {1331 -- 1343}, year = {2022}, abstract = {We present a chronology framework named LegacyAge 1.0 containing harmonized chronologies for 2831 pollen records (downloaded from the Neotoma Paleoecology Database and the supplementary Asian datasets) together with their age control points and metadata in machine-readable data formats. All chronologies use the Bayesian framework implemented in Bacon version 2.5.3. Optimal parameter settings of priors (accumulation.shape, memory.strength, memory.mean, accumulation.rate, and thickness) were identified based on information in the original publication or iteratively after preliminary model inspection. The most common control points for the chronologies are radiocarbon dates (86.1 \%), calibrated by the latest calibration curves (IntCal20 and SHCal20 for the terrestrial radiocarbon dates in the Northern Hemisphere and Southern Hemisphere and Marine20 for marine materials). The original publications were consulted when dealing with outliers and inconsistencies. Several major challenges when setting up the chronologies included the waterline issue (18.8\% of records), reservoir effect (4.9 \%), and sediment deposition discontinuity (4.4 \%). Finally, we numerically compare the LegacyAge 1.0 chronologies to those published in the original publications and show that the reliability of the chronologies of 95.4\% of records could be improved according to our assessment. Our chronology framework and revised chronologies provide the opportunity to make use of the ages and age uncertainties in synthesis studies of, for example, pollen-based vegetation and climate change. The LegacyAge 1.0 dataset, including metadata, datings, harmonized chronologies, and R code used, is openaccess and available at PANGAEA (https://doi.org/10.1594/PANGAEA.933132; Li et al., 2021) and Zenodo (https://doi.org/10.5281/zenodo.5815192; Li et al., 2022), respectively.}, language = {en} } @article{HerzschuhLiBoehmeretal.2022, author = {Herzschuh, Ulrike and Li, Chenzhi and Boehmer, Thomas and Postl, Alexander K. and Heim, Birgit and Andreev, Andrei A. and Cao, Xianyong and Wieczorek, Mareike and Ni, Jian}, title = {LegacyPollen 1.0}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-3213-2022}, pages = {3213 -- 3227}, year = {2022}, abstract = {Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.}, language = {en} } @misc{CaoTianAndreevetal.2020, author = {Cao, Xianyong and Tian, Fang and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Ni, Jian and Rudaya, Natalia and Stobbe, Astrid and Wieczorek, Mareike and Herzschuh, Ulrike}, title = {A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51243}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512438}, pages = {19}, year = {2020}, abstract = {Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 \% of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 \% were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 \%) and lake sediments (33 \%). Most of the records (83 \%) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa.}, language = {en} } @article{CaoTianAndreevetal.2020, author = {Cao, Xianyong and Tian, Fang and Andreev, Andrei and Anderson, Patricia M. and Lozhkin, Anatoly V. and Bezrukova, Elena and Ni, Jian and Rudaya, Natalia and Stobbe, Astrid and Wieczorek, Mareike and Herzschuh, Ulrike}, title = {A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr}, series = {Earth System Science Data}, volume = {12}, journal = {Earth System Science Data}, number = {1}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-12-119-2020}, pages = {119 -- 135}, year = {2020}, abstract = {Pollen records from Siberia are mostly absent in global or Northern Hemisphere synthesis works. Here we present a taxonomically harmonized and temporally standardized pollen dataset that was synthesized using 173 palynological records from Siberia and adjacent areas (northeastern Asia, 42-75 degrees N, 50-180 degrees E). Pollen data were taxonomically harmonized, i.e. the original 437 taxa were assigned to 106 combined pollen taxa. Age-depth models for all records were revised by applying a constant Bayesian age-depth modelling routine. The pollen dataset is available as count data and percentage data in a table format (taxa vs. samples), with age information for each sample. The dataset has relatively few sites covering the last glacial period between 40 and 11.5 ka (calibrated thousands of years before 1950 CE) particularly from the central and western part of the study area. In the Holocene period, the dataset has many sites from most of the area, with the exception of the central part of Siberia. Of the 173 pollen records, 81 \% of pollen counts were downloaded from open databases (GPD, EPD, PANGAEA) and 10 \% were contributions by the original data gatherers, while a few were digitized from publications. Most of the pollen records originate from peatlands (48 \%) and lake sediments (33 \%). Most of the records (83 \%) have >= 3 dates, allowing the establishment of reliable chronologies. The dataset can be used for various purposes, including pollen data mapping (example maps for Larix at selected time slices are shown) as well as quantitative climate and vegetation reconstructions. The datasets for pollen counts and pollen percentages are available at https://doi.org/10.1594/PANGAEA.898616 (Cao et al., 2019a), also including the site information, data source, original publication, dating data, and the plant functional type for each pollen taxa.}, language = {en} } @article{CaoTianTelfordetal.2017, author = {Cao, Xianyong and Tian, Fang and Telford, Richard J. and Ni, Jian and Xu, Qinghai and Chen, Fahu and Liu, Xingqi and Stebich, Martina and Zhao, Yan and Herzschuh, Ulrike}, title = {Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {178}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.030}, pages = {37 -- 53}, year = {2017}, abstract = {Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (P-ann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7 degrees N, 100.5 degrees E; north-east Tibetan Plateau), Gonghai Lake (38.9 degrees N, 112.2 degrees E; north China) and Sihailongwan Lake (42.3 degrees N, 126.6 degrees E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{NiCaoJeltschetal.2014, author = {Ni, Jian and Cao, Xianyong and Jeltsch, Florian and Herzschuh, Ulrike}, title = {Biome distribution over the last 22,000 yr in China}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {409}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.04.023}, pages = {33 -- 47}, year = {2014}, abstract = {Patterns of past vegetation changes over time and space can help facilitate better understanding of the interactions among climate, ecosystem, and human impact. Biome changes in China over the last 22,000 yr (calibrated radiocarbon date, a BP) were numerically reconstructed by using a standard approach of pollen-plant functional type-biome assignment (biomization). The biomization procedure involves pollen data from 2434 surface sites and 228 fossil sites with a high quality of pollen count and C-14 dating, 51 natural and three anthropogenic plant functional types (PFTs), as well as 19 natural and one anthropogenic biome. Surface pollen-based reconstruction of modern natural biome patterns is in good agreement (74.4\%) with actual vegetation distribution in China. However, modem large-scale anthropogenic biome reconstruction has not been successful based on the current setup of three anthropogenic PFTs (plantation, secondary, and disturbed PFT) because of the limitation of non-species level pollen identification and the difficulty in the clear assignment of disturbed PFTs. The non-anthropogenic biome distributions of 44 time slices at 500-year intervals show large-scale discrepant and changed vegetation patterns from the last glacial maximum (LGM) to the Holocene throughout China. From 22 ka BP to 19 ka BP, temperate grassland, xerophytic shrubland, and desert dominated northern China, whereas cold or cool forests flourished in central China. Warm-temperate evergreen forests were restricted to far southern China, and tropical forests were absent During 18.5 ka BP to 12 ka BP, cold, cool, and dry biomes extended to some parts of northern, westem, and eastern China. Warm-temperate evergreen and mixed forests gradually expanded to occupy the whole of southern China. A slight northward shift of forest biomes occurred from 15 ka BP to 12 lea BP. During 11.5 ka BP to 9 ka BP, temperate grassland and shrubland gradually stretched to northern and western China. Cold and cool forests widely expanded into northern and central China, as well as in the northern margin of South China along with temperate deciduous forest. Since the early mid-Holocene (approximately 8.5 ka BP to 5.5 ka BP), all forest biomes shifted northward at the expense of herbaceous and shrubby biomes. Simultaneously, cold and cool forest biomes occupied the marginal areas of the Tibetan Plateau and the high mountains in western China. During the middle to late Holocene, from 5 ka to the present, temperate grassland and xerophytic shrubland expanded to the south and east, whereas temperate deciduous forests slightly shifted southward. After 3 lea BP, forest biomes were absent in western China and on the Tibetan plateau surface. Dramatic biome shifts from the LGM to the Holocene were observed in the forest-grassland ecotone and transitional zones between temperate and subtropical climates, between subtropical and tropical regions, and in the mountainous margins of the eastern Tibetan Plateau. Evidence showed more human disturbances during the late Holocene. More pollen records and historical documents are therefore further needed to understand fully the human disturbance-induced large-scale forest changes. In addition, more classifications of anthropogenic biome or land cover, more distinct assignment of pollen taxa to anthropogenic PFTs, and more effective numerical and/or mechanistic techniques in building large-scale human disturbances are required. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} }