@phdthesis{Bergner2003, author = {Bergner, Andreas G. N.}, title = {Lake-level fluctuations and Late Quaternary climate change in the Central Kenya Rift}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001428}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Rekonstruktion von Klima in historischen Zeiten im tropischen Ostafrika. Nach einer {\"U}bersicht {\"u}ber die heutigen klimatischen Bedingungen der Tropen und den Besonderheiten des ostafrikanischen Klimas, werden die M{\"o}glichkeiten der Klimarekonstruktion anhand von Seesedimenten diskutiert. Es zeigt sich, dass die hoch gelegenen Seen des Zentralen Keniarifts, als Teil des Ostafrikanischen Grabensystems, besonders geeignete Klimaarchive darstellen, da sie sensibel auf klimatische Ver{\"a}nderungen reagieren. Ver{\"a}nderungen der Seechemie, wie sie in den Sedimenten aufgezeichnet werden, eignen sich um die nat{\"u}rlichen Schwankungen in der Quart{\"a}ren Klimageschichte Ostafrikas nachzuzeichnen. Basierend auf der guten 40Ar/39Ar- und 14C-Datierbarkeit der Seesedimente wird eine Chronologie der pal{\"a}o{\"o}kologischen Bedingungen anhand von Diatomeenvergesellschaftungen restauriert. Dabei zeigen sich f{\"u}r die Seen Nakuru, Elmenteita und Naivasha kurzfristige Transgression/ Regressions-Zyklen im Intervall von ca. 11.000 Jahren w{\"a}hrend des letzten (ca. 12.000 bis 6.000 J.v.H.) und vorletzten Interglazials (ca. 140.000 bis 60.000 J.v.H.). Zus{\"a}tzlich kann ein allgemeiner, langfristiger Trend der Seeentwicklung von großen Frischwasserseen hin zu st{\"a}rker salinen Gew{\"a}ssern innerhalb der letzen 1 Mio. Jahre festgestellt werden. Mittels Transferfunktionen und einem hydro-klimatischen Modellansatz k{\"o}nnen die restaurierten limnologischen Bedingungen als klimatische Schwankungen des Einzugsgebietes interpretiert werden. Wenngleich auch der zus{\"a}tzliche Einfluss von tektonischen Ver{\"a}nderungen auf das Seeeinzugsgebiet und das Gewicht ver{\"a}nderter Grundwasserstr{\"o}me abgewogen werden, zeigt sich, dass allein geringf{\"u}gig erh{\"o}hte Niederschlagswerte von ca. 30±10 \% zu dramatischen Seespiegelanstiegen im Zentralen Keniarift f{\"u}hren. Aufgrund der etablierten hydrrologisch-klimatischen Wechselwirkungen werden R{\"u}ckschl{\"u}sse auf die nat{\"u}rliche Variabilit{\"a}t des ostafrikanischen Klimas gezogen. Zudem wird die Sensitivit{\"a}t der Keniarift-Seen in Bezug auf die St{\"a}rke der {\"a}quatorialen Insolation und hinsichtilch variabler Oberfl{\"a}chenwassertemperaturen des Indischen Ozeans bewertet.}, language = {en} } @phdthesis{Jankowski2004, author = {Jankowski, \poundsukasz}, title = {Modelling and simulation of light propagation in non-aged and aged step-index polymer optical fibres}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001649}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Kunststofflichtwellenleiter (POFs) stellen ein verh{\"a}ltnism{\"a}ßig neues Medium zur optische Datenkommunikation {\"u}ber kurzen Strecken dar. W{\"a}hrend ihrer Einsatzdauer unterliegen POFs unterschiedlichen Arten von Umweltbeanspruchungen, haupts{\"a}chlich durch hohe Temperatur, hohe Feuchtigkeit und mechanischen Belastungen. Zahlreiche experimentelle Forschungen besch{\"a}ftigten sich mit der standardisierten Pr{\"u}fung der Zuverl{\"a}ssigkeit von im Handel erh{\"a}ltlichen Fasern. Jedoch gab es bisher wenig Erfolg bei der Bem{\"u}hung, zwei grundlegende optische Erscheinungen, Absorption und Streuung, die die Lichtausbreitung in Fasern stark beeinflussen, zu verstehen und praktisch zu modellieren: Diese beiden Effekte beschreiben nicht nur die Qualit{\"a}t neuer Fasern, sondern sie werden auch stark durch die Alterungsprozess beeinflusst. Der Hauptzweck dieser Doktorarbeit war es, ein praktisch verwendbares und theoretisch gut fundiertes Modell der Lichtausbreitung in nicht gealterten und gealterten POFs zu entwickeln und es durch optische Experimente zu verifizieren. Dabei wurden anwendungsorientierte Aspekte mit theoretischer POF-Modellierung kombiniert. Die Arbeit enth{\"a}lt die erste bekannte Anwendung der Wellenanalyse zur Untersuchung der winkelabh{\"a}ngigen Eigenschaften der Streuung in Lichtwellenleitern. F{\"u}r die praktischen Experimente wurden mehrere POF-Proben unterschiedlicher Hersteller k{\"u}nstlich gealtert, indem sie bis 4500 Stunden bei 100 °C gelagert wurden (ohne Feuchtekontrolle). Die Parameter der jeweiligen Simulationen wurden mittels einer systematischen Optimierung an die gemessen optischen Eigenschaften der gealterten Proben angeglichen. Die Resultate deuten an, dass der {\"U}bertragungsverlust der gealterten Fasern in den ersten Tagen und Wochen der Alterung am st{\"a}rksten durch eine wesentliche physikalische Verschlechterung der Kern-Mantel-Grenzfl{\"a}che verursacht wird. Chemische Effekte des Alterungsprozesses scheinen im Faserkernmaterial zuerst nach einigen Monaten aufzutreten.}, language = {en} } @phdthesis{Wriedt2004, author = {Wriedt, Gunter}, title = {Modelling of nitrogen transport and turnover during soil and groundwater passage in a small lowland catchment of Northern Germany}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001307}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Stoffumsatzreaktionen und hydraulische Prozesse im Boden und Grundwasser k{\"o}nnen in Tieflandeinzugsgebieten zu einer Nitratretention f{\"u}hren. Die Untersuchung dieser Prozesse in Raum und Zeit kann mit Hilfe geeigneter Modelle erfolgen. Ziele dieser Arbeit sind: i) die Entwicklung eines geeigneten Modellansatzes durch Kombination von Teilmodellen zur Simulation des N-Transportes im Boden und Grundwasser von Tieflandeinzugsgebieten und ii) die Untersuchung von Wechselwirkungen zwischen Gebietseigenschaften und N-Transport unter besonderer Ber{\"u}cksichtigung der potentiellen N-Zufuhr in die Oberfl{\"a}chengew{\"a}sser. Der Modellansatz basiert auf der Kombination verschiedener Teilmodelle: das Bodenwasser- und -stickstoffmodell mRISK-N, das Grundwassermodell MODFLOW und das Stofftransportmodell RT3D. Zur Untersuchung der Wechselwirkungen mit den Gebietseigenschaften muss die Verteilung und Verf{\"u}gbarkeit von Reaktionspartnern ber{\"u}cksichtigt werden. Dazu wurde ein Reaktionsmodul entwickelt, welches chemische Prozesse im Grundwasser simuliert. Hierzu geh{\"o}ren die Mineralisation organischer Substanz durch Sauerstoff, Nitrat und Sulfat sowie die Pyritoxidation durch Sauerstoff und Nitrat. Der Modellansatz wurde in verschiedenen Einzelstudien angewandt, wobei jeweils bestimmte Teilmodelle im Vordergrund stehen. Alle Modellstudien basieren auf Daten aus dem Schaugrabeneinzugsgebiet (ca. 25 km\&\#178;), in der N{\"a}he von Osterburg(Altmark) im Norden Sachsen-Anhalts. Die folgenden Einzelstudien wurden durchgef{\"u}hrt: i) Evaluation des Bodenmodells anhand von Lysimeterdaten, ii) Modellierung eines Tracerexperimentes im Feldmaßstab als eine erste Anwendung des Reaktionsmoduls, iii) Untersuchung hydraulisch-chemischer Wechselwirkungen an einem 2D-Grundwassertransekt, iv) Fl{\"a}chenverteilte Modellierung von Grundwasserneubildung und Bodenstickstoffaustrag im Untersuchungsgebiet als Eingangsdaten f{\"u}r nachfolgende Grundwassersimulationen, und v) Untersuchung der Ausbreitung von Nitrat im Grundwasser und des Durchbruchs in die Oberfl{\"a}chengew{\"a}sser im Untersuchungsgebiet auf Basis einer 3D-Modellierung von Grundwasserstr{\"o}mung und reaktivem Stofftransport. Die Modellstudien zeigen, dass der Modellansatz geeignet ist, die Wechselwirkungen zwischen Stofftransport und \–umsatz und den hydraulisch-chemischen Gebietseigenschaften zu modellieren. Die Ausbreitung von Nitrat im Sediment wird wesentlich von der Verf{\"u}gbarkeit reaktiver Substanzen sowie der Verweilzeit im Grundwasserleiter bestimmt. Bei der Simulation des Untersuchungsgebietes wurde erst nach 70 Jahren eine der gegebenen Eintragssitutation entsprechende Nitratkonzentration im Grundwasserzustrom zum Grabensystem erreicht (konservativer Transport). Die Ber{\"u}cksichtigung von reaktivem Stofftransport f{\"u}hrt zu einer deutlichen Reduktion der Nitratkonzentrationen. Die Modellergebnisse zeigen, dass der Grundwasserzustrom die beobachtete Nitratbelastung im Grabensystem nicht erkl{\"a}ren kann, da der Großteil des Nitrates durch Denitrifikation verloren geht. Andere Quellen, wie direkte Eintr{\"a}ge oder Dr{\"a}nagenzufl{\"u}sse m{\"u}ssen ebenfalls in Betracht gezogen werden. Die Prognosef{\"a}higkeit des Modells f{\"u}r das Untersuchungsgebiet wird durch die Datenunsicherheiten und die Sch{\"a}tzung der Modellparameter eingeschr{\"a}nkt. Dennoch ist der Modellansatz eine wertvolle Hilfe bei der Identifizierung von belastungsrelevanten Teilfl{\"a}chen (Stoffquellen und -senken) sowie bei der Modellierung der Auswirkungen von Managementmaßnahmen oder Landnutzungsver{\"a}nderungen auf Grundlage von Szenario-Simulationen. Der Modellansatz unterst{\"u}tzt auch die Interpretation von Beobachtungsdaten, da so die lokalen Informationen in einen r{\"a}umlichen und zeitlichen Zusammenhang gestellt werden k{\"o}nnen.}, language = {en} } @phdthesis{Zaehle2005, author = {Zaehle, S{\"o}nke}, title = {Process-based simulation of the terrestrial biosphere : an evaluation of present-day and future terrestrial carbon balance estimates and their uncertainty}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5263}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {At present, carbon sequestration in terrestrial ecosystems slows the growth rate of atmospheric CO2 concentrations, and thereby reduces the impact of anthropogenic fossil fuel emissions on the climate system. Changes in climate and land use affect terrestrial biosphere structure and functioning at present, and will likely impact on the terrestrial carbon balance during the coming decades - potentially providing a positive feedback to the climate system due to soil carbon releases under a warmer climate. Quantifying changes, and the associated uncertainties, in regional terrestrial carbon budgets resulting from these effects is relevant for the scientific understanding of the Earth system and for long-term climate mitigation strategies. A model describing the relevant processes that govern the terrestrial carbon cycle is a necessary tool to project regional carbon budgets into the future. This study (1) provides an extensive evaluation of the parameter-based uncertainty in model results of a leading terrestrial biosphere model, the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), against a range of observations and under climate change, thereby complementing existing studies on other aspects of model uncertainty; (2) evaluates different hypotheses to explain the age-related decline in forest growth, both from theoretical and experimental evidence, and introduces the most promising hypothesis into the model; (3) demonstrates how forest statistics can be successfully integrated with process-based modelling to provide long-term constraints on regional-scale forest carbon budget estimates for a European forest case-study; and (4) elucidates the combined effects of land-use and climate changes on the present-day and future terrestrial carbon balance over Europe for four illustrative scenarios - implemented by four general circulation models - using a comprehensive description of different land-use types within the framework of LPJ-DGVM. This study presents a way to assess and reduce uncertainty in process-based terrestrial carbon estimates on a regional scale. The results of this study demonstrate that simulated present-day land-atmosphere carbon fluxes are relatively well constrained, despite considerable uncertainty in modelled net primary production. Process-based terrestrial modelling and forest statistics are successfully combined to improve model-based estimates of vegetation carbon stocks and their change over time. Application of the advanced model for 77 European provinces shows that model-based estimates of biomass development with stand age compare favourably with forest inventory-based estimates for different tree species. Driven by historic changes in climate, atmospheric CO2 concentration, forest area and wood demand between 1948 and 2000, the model predicts European-scale, present-day age structure of forests, ratio of biomass removals to increment, and vegetation carbon sequestration rates that are consistent with inventory-based estimates. Alternative scenarios of climate and land-use change in the 21st century suggest carbon sequestration in the European terrestrial biosphere during the coming decades will likely be on magnitudes relevant to climate mitigation strategies. However, the uptake rates are small in comparison to the European emissions from fossil fuel combustion, and will likely decline towards the end of the century. Uncertainty in climate change projections is a key driver for uncertainty in simulated land-atmosphere carbon fluxes and needs to be accounted for in mitigation studies of the terrestrial biosphere.}, subject = {Terrestrische {\"O}kologie}, language = {en} } @phdthesis{Rossmanith2005, author = {Rossmanith, Eva}, title = {Breeding biology, mating system and population dynamics of the Lesser Spotted Woodepcker (Picoides minor) : combining empirical and model investigations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5328}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The protection of species is one major focus in conservation biology. The basis for any management concept is the knowledge of the species autecology. In my thesis, I studied the life-history traits and population dynamics of the endangered Lesser Spotted Woodpecker (Picoides minor) in Central Europe. Here, I combine a range of approaches, from empirical investigations of a Lesser Spotted Woodpecker population in the Taunus low mountain range in Germany, the analysis of empirical data and the development of an individual-based stochastic model simulating the population dynamics. In the field studies I collected basic demographic data of reproductive success and mortality. Moreover, breeding biology and behaviour were investigated in detail. My results showed a significant decrease of the reproductive success with later timing of breeding, caused by deterioration in food supply. Moreover, mate fidelity was of benefit, since pairs composed of individuals that bred together the previous year started earlier with egg laying and obtained a higher reproductive success. Both sexes were involved in parental care, but the care was only shared equally during incubation and the early nestling stage. In the late nestling stage, parental care strategies differed between sexes: Females considerably decreased feeding rate with number of nestlings and even completely deserted small broods. Males fed their nestlings irrespective of brood size and compensated for the females absence. The organisation of parental care in the Lesser Spotted Woodpecker is discussed to provide the possibility for females to mate with two males with separate nests and indeed, polyandry was confirmed. To investigate the influence of the observed flexibility in the social mating system on the population persistence, a stochastic individual-based model simulating the population dynamics of the Lesser Spotted Woodpecker was developed, based on empirical results. However, pre-breeding survival rates could not be obtained empirically and I present in this thesis a pattern-oriented modelling approach to estimate pre-breeding survival rates by comparing simulation results with empirical pattern of population structure and reproductive success on population level. Here, I estimated the pre-breeding survival for two Lesser Spotted Woodpecker populations on different latitudes to test the reliability of the results. Finally, I used the same simulation model to investigate the effect of flexibility in the mating system on the persistence of the population. With increasing rate of polyandry in the population, the persistence increased and even low rates of polyandry had a strong influence. Even when presuming only a low polyandry rate and costs of polyandry in terms of higher mortality and lower reproductive success for the secondary male, the positive effect of polyandry on the persistence of the population was still strong. This thesis greatly helped to increase the knowledge of the autecology of an endangered woodpecker species. Beyond the relevance for the species, I could demonstrate here that in general flexibility in mating systems are buffer mechanisms and reduce the impact of environmental and demographic noise.}, subject = {Modellierung}, language = {en} } @phdthesis{Hattermann2005, author = {Hattermann, Fred}, title = {Integrated modelling of Global Change impacts in the German Elbe River Basin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6052}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The scope of this study is to investigate the environmental change in the German part of the Elbe river basin, whereby the focus is on two water related problems: having too little water and having water of poor quality. The Elbe region is representative of humid to semi-humid landscapes in central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas, where the annual precipitation is lower than 500 mm. It is most likely that water quantity problems will accelerate in future, because both the observed and the projected climate trend show an increase in temperature and a decrease in annual precipitation, especially in the summer. Another problem is nutrient pollution of rivers and lakes. In the early 1990s, the Elbe was one of the most heavily polluted rivers in Europe. Even though nutrient emissions from point sources have notably decreased in the basin due to reduction of industrial sources and introduction of new and improved sewage treatment facilities, the diffuse sources of pollution are still not sufficiently controlled. The investigations have been done using the eco-hydrological model SWIM (Soil and Water Integrated Model), which has been embedded in a model framework of climate and agro-economic models. A global scenario of climate and agro-economic change has been regionalized to generate transient climate forcing data and land use boundary conditions for the model. The model was used to transform the climate and land use changes into altered evapotranspiration, groundwater recharge, crop yields and river discharge, and to investigate the development of water quality in the river basin. Particular emphasis was given to assessing the significance of the impacts on the hydrology, taking into account in the analysis the inherent uncertainty of the regional climate change as well as the uncertainty in the results of the model. The average trend of the regional climate change scenario indicates a decrease in mean annual precipitation up to 2055 of about 1.5 \%, but with high uncertainty (covering the range from -15.3 \% to +14.8 \%), and a less uncertain increase in temperature of approximately 1.4 K. The relatively small change in precipitation in conjunction with the change in temperature leads to severe impacts on groundwater recharge and river flow. Increasing temperature induces longer vegetation periods, and the seasonality of the flow regime changes towards longer low flow spells in summer. As a results the water availability will decrease on average of the scenario simulations by approximately 15 \%. The increase in temperatures will improve the growth conditions for temperature limited crops like maize. The uncertainty of the climate trend is particularly high in regions where the change is the highest. The simulation results for the Nuthe subbasin of the Elbe indicate that retention processes in groundwater, wetlands and riparian zones have a high potential to reduce the nitrate concentrations of rivers and lakes in the basin, because they are located at the interface between catchment area and surface water bodies, where they are controlling the diffuse nutrient inputs. The relatively high retention of nitrate in the Nuthe basin is due to the long residence time of water in the subsurface (about 40 years), with good conditions for denitrification, and due to nitrate retention and plant uptake in wetlands and riparian zones. The concluding result of the study is that the natural environment and communities in parts of Central Europe will have considerably lower water resources under scenario conditions. The water quality will improve, but due to the long residence time of water and nutrients in the subsurface, this improvement will be slower in areas where the conditions for nutrient turn-over in the subsurface are poor.}, subject = {Hydrologie}, language = {en} } @phdthesis{Kneis2007, author = {Kneis, David}, title = {A water quality model for shallow river-lake systems and its application in river basin management}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14647}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work documents the development and application of a new model for simulating mass transport and turnover in rivers and shallow lakes. The simulation tool called 'TRAM' is intended to complement mesoscale eco-hydrological catchment models in studies on river basin management. TRAM aims at describing the water quality of individual water bodies, using problem- and scale-adequate approaches for representing their hydrological and ecological characteristics. The need for such flexible water quality analysis and prediction tools is expected to further increase during the implementation of the European Water Framework Directive (WFD) as well as in the context of climate change research. The developed simulation tool consists of a transport and a reaction module with the latter being highly flexible with respect to the description of turnover processes in the aquatic environment. Therefore, simulation approaches of different complexity can easily be tested and model formulations can be chosen in consideration of the problem at hand, knowledge of process functioning, and data availability. Consequently, TRAM is suitable for both heavily simplified engineering applications as well as scientific ecosystem studies involving a large number of state variables, interactions, and boundary conditions. TRAM can easily be linked to catchment models off-line and it requires the use of external hydrodynamic simulation software. Parametrization of the model and visualization of simulation results are facilitated by the use of geographical information systems as well as specific pre- and post-processors. TRAM has been developed within the research project 'Management Options for the Havel River Basin' funded by the German Ministry of Education and Research. The project focused on the analysis of different options for reducing the nutrient load of surface waters. It was intended to support the implementation of the WFD in the lowland catchment of the Havel River located in North-East Germany. Within the above-mentioned study TRAM was applied with two goals in mind. In a first step, the model was used for identifying the magnitude as well as spatial and temporal patterns of nitrogen retention and sediment phosphorus release in a 100~km stretch of the highly eutrophic Lower Havel River. From the system analysis, strongly simplified conceptual approaches for modeling N-retention and P-remobilization in the studied river-lake system were obtained. In a second step, the impact of reduced external nutrient loading on the nitrogen and phosphorus concentrations of the Havel River was simulated (scenario analysis) taking into account internal retention/release. The boundary conditions for the scenario analysis such as runoff and nutrient emissions from river basins were computed by project partners using the catchment models SWIM and ArcEGMO-Urban. Based on the output of TRAM, the considered options of emission control could finally be evaluated using a site-specific assessment scale which is compatible with the requirements of the WFD. Uncertainties in the model predictions were also examined. According to simulation results, the target of the WFD -- with respect to total phosphorus concentrations in the Lower Havel River -- could be achieved in the medium-term, if the full potential for reducing point and non-point emissions was tapped. Furthermore, model results suggest that internal phosphorus loading will ease off noticeably until 2015 due to a declining pool of sedimentary mobile phosphate. Mass balance calculations revealed that the lakes of the Lower Havel River are an important nitrogen sink. This natural retention effect contributes significantly to the efforts aimed at reducing the river's nitrogen load. If a sustainable improvement of the river system's water quality is to be achieved, enhanced measures to further reduce the immissions of both phosphorus and nitrogen are required.}, language = {en} } @phdthesis{Grimbs2009, author = {Grimbs, Sergio}, title = {Towards structure and dynamics of metabolic networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32397}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {This work presents mathematical and computational approaches to cover various aspects of metabolic network modelling, especially regarding the limited availability of detailed kinetic knowledge on reaction rates. It is shown that precise mathematical formulations of problems are needed i) to find appropriate and, if possible, efficient algorithms to solve them, and ii) to determine the quality of the found approximate solutions. Furthermore, some means are introduced to gain insights on dynamic properties of metabolic networks either directly from the network structure or by additionally incorporating steady-state information. Finally, an approach to identify key reactions in a metabolic networks is introduced, which helps to develop simple yet useful kinetic models. The rise of novel techniques renders genome sequencing increasingly fast and cheap. In the near future, this will allow to analyze biological networks not only for species but also for individuals. Hence, automatic reconstruction of metabolic networks provides itself as a means for evaluating this huge amount of experimental data. A mathematical formulation as an optimization problem is presented, taking into account existing knowledge and experimental data as well as the probabilistic predictions of various bioinformatical methods. The reconstructed networks are optimized for having large connected components of high accuracy, hence avoiding fragmentation into small isolated subnetworks. The usefulness of this formalism is exemplified on the reconstruction of the sucrose biosynthesis pathway in Chlamydomonas reinhardtii. The problem is shown to be computationally demanding and therefore necessitates efficient approximation algorithms. The problem of minimal nutrient requirements for genome-scale metabolic networks is analyzed. Given a metabolic network and a set of target metabolites, the inverse scope problem has as it objective determining a minimal set of metabolites that have to be provided in order to produce the target metabolites. These target metabolites might stem from experimental measurements and therefore are known to be produced by the metabolic network under study, or are given as the desired end-products of a biotechological application. The inverse scope problem is shown to be computationally hard to solve. However, I assume that the complexity strongly depends on the number of directed cycles within the metabolic network. This might guide the development of efficient approximation algorithms. Assuming mass-action kinetics, chemical reaction network theory (CRNT) allows for eliciting conclusions about multistability directly from the structure of metabolic networks. Although CRNT is based on mass-action kinetics originally, it is shown how to incorporate further reaction schemes by emulating molecular enzyme mechanisms. CRNT is used to compare several models of the Calvin cycle, which differ in size and level of abstraction. Definite results are obtained for small models, but the available set of theorems and algorithms provided by CRNT can not be applied to larger models due to the computational limitations of the currently available implementations of the provided algorithms. Given the stoichiometry of a metabolic network together with steady-state fluxes and concentrations, structural kinetic modelling allows to analyze the dynamic behavior of the metabolic network, even if the explicit rate equations are not known. In particular, this sampling approach is used to study the stabilizing effects of allosteric regulation in a model of human erythrocytes. Furthermore, the reactions of that model can be ranked according to their impact on stability of the steady state. The most important reactions in that respect are identified as hexokinase, phosphofructokinase and pyruvate kinase, which are known to be highly regulated and almost irreversible. Kinetic modelling approaches using standard rate equations are compared and evaluated against reference models for erythrocytes and hepatocytes. The results from this simplified kinetic models can simulate acceptably the temporal behavior for small changes around a given steady state, but fail to capture important characteristics for larger changes. The aforementioned approach to rank reactions according to their influence on stability is used to identify a small number of key reactions. These reactions are modelled in detail, including knowledge about allosteric regulation, while all other reactions were still described by simplified reaction rates. These so-called hybrid models can capture the characteristics of the reference models significantly better than the simplified models alone. The resulting hybrid models might serve as a good starting point for kinetic modelling of genome-scale metabolic networks, as they provide reasonable results in the absence of experimental data, regarding, for instance, allosteric regulations, for a vast majority of enzymatic reactions.}, language = {en} } @phdthesis{Jechow2009, author = {Jechow, Andreas}, title = {Tailoring the emission of stripe-array diode lasers with external cavities to enable nonlinear frequency conversion}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-031-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39653}, school = {Universit{\"a}t Potsdam}, pages = {ii, 139}, year = {2009}, abstract = {A huge number of applications require coherent radiation in the visible spectral range. Since diode lasers are very compact and efficient light sources, there exists a great interest to cover these applications with diode laser emission. Despite modern band gap engineering not all wavelengths can be accessed with diode laser radiation. Especially in the visible spectral range between 480 nm and 630 nm no emission from diode lasers is available, yet. Nonlinear frequency conversion of near-infrared radiation is a common way to generate coherent emission in the visible spectral range. However, radiation with extraordinary spatial temporal and spectral quality is required to pump frequency conversion. Broad area (BA) diode lasers are reliable high power light sources in the near-infrared spectral range. They belong to the most efficient coherent light sources with electro-optical efficiencies of more than 70\%. Standard BA lasers are not suitable as pump lasers for frequency conversion because of their poor beam quality and spectral properties. For this purpose, tapered lasers and diode lasers with Bragg gratings are utilized. However, these new diode laser structures demand for additional manufacturing and assembling steps that makes their processing challenging and expensive. An alternative to BA diode lasers is the stripe-array architecture. The emitting area of a stripe-array diode laser is comparable to a BA device and the manufacturing of these arrays requires only one additional process step. Such a stripe-array consists of several narrow striped emitters realized with close proximity. Due to the overlap of the fields of neighboring emitters or the presence of leaky waves, a strong coupling between the emitters exists. As a consequence, the emission of such an array is characterized by a so called supermode. However, for the free running stripe-array mode competition between several supermodes occurs because of the lack of wavelength stabilization. This leads to power fluctuations, spectral instabilities and poor beam quality. Thus, it was necessary to study the emission properties of those stripe-arrays to find new concepts to realize an external synchronization of the emitters. The aim was to achieve stable longitudinal and transversal single mode operation with high output powers giving a brightness sufficient for efficient nonlinear frequency conversion. For this purpose a comprehensive analysis of the stripe-array devices was done here. The physical effects that are the origin of the emission characteristics were investigated theoretically and experimentally. In this context numerical models could be verified and extended. A good agreement between simulation and experiment was observed. One way to stabilize a specific supermode of an array is to operate it in an external cavity. Based on mathematical simulations and experimental work, it was possible to design novel external cavities to select a specific supermode and stabilize all emitters of the array at the same wavelength. This resulted in stable emission with 1 W output power, a narrow bandwidth in the range of 2 MHz and a very good beam quality with M²<1.5. This is a new level of brightness and brilliance compared to other BA and stripe-array diode laser systems. The emission from this external cavity diode laser (ECDL) satisfied the requirements for nonlinear frequency conversion. Furthermore, a huge improvement to existing concepts was made. In the next step newly available periodically poled crystals were used for second harmonic generation (SHG) in single pass setups. With the stripe-array ECDL as pump source, more than 140 mW of coherent radiation at 488 nm could be generated with a very high opto-optical conversion efficiency. The generated blue light had very good transversal and longitudinal properties and could be used to generate biphotons by parametric down-conversion. This was feasible because of the improvement made with the infrared stripe-array diode lasers due to the development of new physical concepts.}, language = {en} } @phdthesis{Francke2009, author = {Francke, Till}, title = {Measurement and modelling of water and sediment fluxes in meso-scale dryland catchments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-31525}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Water shortage is a serious threat for many societies worldwide. In drylands, water management measures like the construction of reservoirs are affected by eroded sediments transported in the rivers. Thus, the capability of assessing water and sediment fluxes at the river basin scale is of vital importance to support management decisions and policy making. This subject was addressed by the DFG-funded SESAM-project (Sediment Export from large Semi-Arid catchments: Measurements and Modelling). As a part of this project, this thesis focuses on (1) the development and implementation of an erosion module for a meso-scale catchment model, (2) the development of upscaling and generalization methods for the parameterization of such model, (3) the execution of measurements to obtain data required for the modelling and (4) the application of the model to different study areas and its evaluation. The research was carried out in two meso-scale dryland catchments in NE-Spain: Ribera Salada (200 km²) and Is{\´a}bena (450 km²). Adressing objective 1, WASA-SED, a spatially semi-distributed model for water and sediment transport at the meso-scale was developed. The model simulates runoff and erosion processes at the hillslope scale, transport processes of suspended and bedload fluxes in the river reaches, and retention and remobilisation processes of sediments in reservoirs. This thesis introduces the model concept, presents current model applications and discusses its capabilities and limitations. Modelling at larger scales faces the dilemma of describing relevant processes while maintaining a manageable demand for input data and computation time. WASA-SED addresses this challenge by employing an innovative catena-based upscaling approach: the landscape is represented by characteristic toposequences. For deriving these toposequences with regard to multiple attributes (eg. topography, soils, vegetation) the LUMP-algorithm (Landscape Unit Mapping Program) was developed and related to objective 2. It incorporates an algorithm to retrieve representative catenas and their attributes, based on a Digital Elevation Model and supplemental spatial data. These catenas are classified to provide the discretization for the WASA-SED model. For objective 3, water and sediment fluxes were monitored at the catchment outlet of the Is{\´a}bena and some of its sub-catchments. For sediment yield estimation, the intermittent measurements of suspended sediment concentration (SSC) had to be interpolated. This thesis presents a comparison of traditional sediment rating curves (SRCs), generalized linear models (GLMs) and non-parametric regression using Random Forests (RF) and Quantile Regression Forests (QRF). The observed SSCs are highly variable and range over six orders of magnitude. For these data, traditional SRCs performed poorly, as did GLMs, despite including other relevant process variables (e.g. rainfall intensities, discharge characteristics). RF and QRF proved to be very robust and performed favourably for reproducing sediment dynamics. QRF additionally excels in providing estimates on the accuracy of the predictions. Subsequent analysis showed that most of the sediment was exported during intense storms of late summer. Later floods yielded successively less sediment. Comparing sediment generation to yield at the outlet suggested considerable storage effects within the river channel. Addressing objective 4, the WASA-SED model was parameterized for the two study areas in NE Spain and applied with different foci. For Ribera Salada, the uncalibrated model yielded reasonable results for runoff and sediment. It provided quantitative measures of the change in runoff and sediment yield for different land-uses. Additional land management scenarios were presented and compared to impacts caused by climate change projections. In contrast, the application for the Is{\´a}bena focussed on exploring the full potential of the model's predictive capabilities. The calibrated model achieved an acceptable performance for the validation period in terms of water and sediment fluxes. The inadequate representation of the lower sub-catchments inflicted considerable reductions on model performance, while results for the headwater catchments showed good agreement despite stark contrasts in sediment yield. In summary, the application of WASA-SED to three catchments proved the model framework to be a practicable multi-scale approach. It successfully links the hillslope to the catchment scale and integrates the three components hillslope, river and reservoir in one model. Thus, it provides a feasible approach for tackling issues of water and sediment yield at the meso-scale. The crucial role of processes like transmission losses and sediment storage in the river has been identified. Further advances can be expected when the representation of connectivity of water and sediment fluxes (intra-hillslope, hillslope-river, intra-river) is refined and input data improves.}, language = {en} }