@article{BoeerFennekohlPueschel2003, author = {B{\"o}er, Ulrike and Fennekohl, Alexandra and P{\"u}schel, Gerhard Paul}, title = {Sensitization by interleukin-6 of rat hepatocytes to tumor necrosis factor alpha-induced apoptosis}, year = {2003}, abstract = {BACKGROUND/AIMS: Tumor necrosis factor (TNF) elicits hepatocyte apoptosis in toxic liver injury and is also central in hepatocyte proliferation after partial hepatectomy. In both circumstances interleukin (IL)-6 levels are also elevated. In mouse liver IL-6 attenuated Fas receptor-mediated apoptosis indicating its interference with pro-apoptotic signal chains. It was, therefore, the aim to examine the modulation by IL-6 of TNFalpha-induced apoptosis in rat hepatocytes. METHODS: Primary rat hepatocytes were treated with IL-6 prior to induction of apoptosis with TNFalpha/ actinomycin D or anti-Fas antibody M-20. Apoptosis was detected by determination of caspase-3 activation and bisbenzimide staining of condensed nuclei. Expression of TNFalpha receptors was analyzed by semi-quantitative polymerase chain reaction and ligand binding studies with [125I]-TNFalpha. RESULTS: IL-6 treatment doubled TNFalpha/actinomycin D- induced caspase-3 activity and significantly enhanced chromatin condensation. By contrast IL-6 inhibited Fas-induced increase in caspase-3 activity by 45\% and significantly reduced chromatin condensation. IL-6 increased the mRNA level of TNF-R1 1.35-fold and augmented cell surface binding of [125I]-TNFalpha 3-fold. The latter and TNFalpha-mediated caspase activation was attenuated by prostaglandin E(2). CONCLUSIONS: IL-6 - in contrast to its anti-apoptotic modulation of the Fas-induced pathway - exerted a pro-apoptotic effect on the TNFalpha/actinomycin D-induced apoptosis by increasing the number of TNF-R on hepatocytes.}, language = {en} } @article{FennekohlLucasPueschel2000, author = {Fennekohl, Alexandra and Lucas, Maria and P{\"u}schel, Gerhard Paul}, title = {Induction by interleukin 6 of G(s)-coupled prostaglandin E(2) receptors in rat hepatocytes mediating a prostaglandin e(2)-dependent inhibition of the hepatocyte's acute phase response}, year = {2000}, abstract = {Prostanoids, that are released from nonparenchymal liver cells in response to proinflammatory stimuli, are involved in the regulation of hepatic functions during inflammation. They exert their effects on their target cells via heptahelical receptors in the plasma membrane. For the 5 prostanoids prostaglandin E(2) (PGE(2)), prostaglandin F(2alpha), prostaglandin D(2) (PGD(2)), prostacyclin, and thromboxane A(2) there exist 8 receptors that are coupled to different heterotrimeric G proteins. These receptors are expressed differentially in the 4 principal liver cell types, i.e., hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells. It was intriguing, that the messenger RNA (mRNA) of none of the G(s)-coupled prostanoid receptors (DP-R, EP2-R, EP4-R, and IP-R) that can attenuate the inflammatory reaction were present in hepatocytes. The current study shows that the expression of the G(s)-coupled prostanoid receptors EP2-R, EP4-R, and DP-R, but not the IP-R, was efficiently and rapidly up-regulated by treatment of hepatocytes in vitro or rats in vivo with the key acute phase cytokine interleukin 6 (IL-6). In IL-6-treated hepatocytes PGE(2) in turn attenuated the IL-6-induced alpha(2)-macroglobulin formation via a cyclic adenosine monophosphate (cAMP)- dependent signal chain. The data indicate that an IL-6-mediated induction of the previously not expressed EP2-R and EP4- R on hepatocytes might establish a prostanoid-mediated feedback inhibition loop for the attenuation of the acute phase response.}, language = {en} } @article{FennekohlSchieferdeckerJungermannetal.1999, author = {Fennekohl, Alexandra and Schieferdecker, Henrike L. and Jungermann, Kurt and P{\"u}schel, Gerhard Paul}, title = {Differential expression of prostanoid receptors in hepatocytes, Kupffer cells, sinusoidal endothelial cells and stellate cells of rat liver}, issn = {0168-8278}, year = {1999}, abstract = {BACKGROUND/AIMS: Prostanoids produced by nonparenchymal cells modulate the function of parenchymal and nonparenchymal liver cells during homeostasis and inflammation via eight classes of prostanoid receptors coupled to different G-proteins. Prostanoid receptor expression in parenchymal and nonparenchymal cells was studied in order to get a better insight into the complex prostanoid-mediated intrahepatic signaling network. METHODS: RNA was isolated from freshly purified parenchymal and nonparenchymal rat liver cells and the mRNA level of all eight prostanoid receptor classes was determined by newly developed semiquantitative reverse transcription-polymerase chain reaction protocols. RESULTS: The mRNAs for the prostanoid receptors were differentially expressed. Hepatocytes were the only cell type which contained the mRNA of the Gq-linked prostaglandin F2alpha receptor; they were devoid of any mRNA for the Gs-linked prostanoid receptors. Kupffer cells possessed the largest amount of mRNA for the Gs-linked prostaglandin E2 receptor subtype 2. Endothelial cells expressed high levels of mRNA for the Gq-linked thromboxane receptor and medium levels of mRNA for the Gs-linked prostacyclin receptor, while stellate cells had the highest levels of mRNA for the prostacyclin receptor. The mRNAs for the Gq-linked prostaglandin E2 receptor subtype 1 and the Gi-linked prostaglandin E2 receptor subtype 3 were expressed in hepatocytes and all nonparenchymal cell types at similar high levels, whereas the mRNA of the Gs-linked prostaglandin D2 receptor was expressed in all nonparenchymal cells at very low levels. CONCLUSIONS: In hepatocytes the prostaglandin F2alpha receptor can mediate an increase in glucose output via an increase of intracellular InsP3 while cAMP-dependent glucose output can be inhibited via the subtype 3 prostaglandin E2 receptor. The subtype 2 prostaglandin E2 receptor can restrain the inflammatory response of Kupffer cells via an increase in intracellular cAMP The thromboxane receptor and the prostacyclin receptor in sinusoidal endothelial and the prostacyclin receptor in stellate cells may be involved in the regulation of sinusoidal blood flow and filtration.}, language = {en} } @article{FennekohlSugimotoSegietal.2002, author = {Fennekohl, Alexandra and Sugimoto, Yukihiko and Segi, Eri and Maruyama, Takayuki and Ichikawa, Atsushi and P{\"u}schel, Gerhard Paul}, title = {Contribution of the two Gs-coupled PGE(2)-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNF alpha-information in Kupffer cells from EP2-or-EP4-receptor-dficient mice : pivotal role for the EP4- receptor in wild type Kupffer cells}, year = {2002}, abstract = {Background/Aims: Prostaglandin E(2) (PGE(2)) is known to inhibit the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFalpha) formation in Kupffer cells via an increase in cAMP. Four receptor-subtypes have been cloned for PGE(2) so far. Two of them, the EP2-receptor and the EP4-receptor are linked to stimulatory Gs-proteins and could mediate the inhibition by PGE(2) of TNFalpha-formation.Methods: The significance of both receptors for PGE(2)- dependent inhibition of LPS-induced TNFalpha-formation was studied using Kupffer cells of mice in which either one of the two receptors had been eliminated by homologous recombination.Results: The mRNAs of both receptors were expressed in wild type mouse Kupffer cells. Exogenous PGE(2) inhibited TNFalpha-formation in Kupffer cells lacking either EP2-receptor or EP4-receptor to a similar extent as in control cells, however, 10-fold higher PGE(2) concentrations were needed for half maximal inhibition in cells lacking the EP4-receptor than in control or EP2-receptor- deficient cells. The response to endogenous PGE(2) was blunted in EP4-receptor-deficient mice only and especially after prolonged incubation. Conclusions: The data indicate, that PGE(2) can inhibit TNFalpha-formation via both the EP2- and the EP4-receptor and that, however, the EP4-receptor appears to be physiologically more relevant in Kupffer cells since it conferred a high affinity response to PGE(2).}, language = {en} }