@article{HantschmannFoehlisch2022, author = {Hantschmann, Markus and F{\"o}hlisch, Alexander}, title = {A rate model approach for FEL pulse induced transmissions changes, saturable absorption, X-ray transparency and stimulated emission}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {256}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2021.147139}, pages = {9}, year = {2022}, abstract = {As the use of free electron laser (FEL) sources increases, so do the findings mentioning non-linear phenomena occurring at these experiments, such as saturable absorption, induced transparency and scattering breakdowns. These are well known among the laser community, but are still rarely understood and expected among the X-ray community and to date lack tools and theories to accurately predict the respective experimental parameters and results. We present a simple theoretical framework to access short X-ray pulse induced light- matter interactions which occur at intense short X-ray pulses as available at FEL sources. Our approach allows to investigate effects such as saturable absorption, induced transparency and scattering suppression, stimulated emission, and transmission spectra, while including the density of state influence relevant to soft X-ray spectroscopy in, for example, transition metal complexes or functional materials. This computationally efficient rate model based approach is intuitively adaptable to most solid state sample systems in the soft X-ray spectrum with the potential to be extended for liquid and gas sample systems as well. The feasibility of the model to estimate the named effects and the influence of the density of state is demonstrated using the example of CoPd transition metal systems at the Co edge. We believe this work is an important contribution for the preparation, performance, and understanding of FEL based high intensity and short pulse experiments, especially on functional materials in the soft X-ray spectrum.}, language = {en} } @article{KunnusRajkovicSchrecketal.2012, author = {Kunnus, Kristjan and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Eckert, Sebastian and Beye, Martin and Suljoti, Edlira and Weniger, Christian and Kalus, Christian and Gruebel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4772685}, pages = {8}, year = {2012}, abstract = {We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.}, language = {en} } @article{BeyeFoehlisch2011, author = {Beye, Martin and F{\"o}hlisch, Alexander}, title = {A soft X-ray approach to electron-phonon interactions beyond the Born-Oppenheimer approximation}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {184}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, number = {3-6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2010.12.032}, pages = {313 -- 317}, year = {2011}, abstract = {With modern soft X-ray methods, the whole field of electron-phonon interactions becomes accessible directly in the ultrafast time domain with ultrashort pulsed X-ray sources, as well as in the energy domain through modern highly resolving spectrometers. The well-known core-hole clock approach plays an intermediate role, resolving energetic and temporal features at the same time. In this perspective paper, we review several experiments to illustrate the modern advances in the selective study of electron-phonon interactions as fundamentally determining ingredients for materials properties. We present the different complementary approaches that can be taken with soft X-ray methods to conquer this field beyond the Born-Oppenheimer approximation.}, language = {en} } @article{VazdaCruzErtanCoutoetal.2017, author = {Vaz da Cruz, Vinicius and Ertan, Emelie and Couto, Rafael C. and Eckert, Sebastian and Fondell, Mattis and Dantz, Marcus and Kennedy, Brian and Schmitt, Thorsten and Pietzsch, Annette and Guimaraes, Freddy F. and {\AA}gren, Hans and Odelius, Michael and F{\"o}hlisch, Alexander and Kimberg, Victor}, title = {A study of the water molecule using frequency control over nuclear dynamics in resonant X-ray scattering}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c7cp01215b}, pages = {19573 -- 19589}, year = {2017}, abstract = {In this combined theoretical and experimental study we report a full analysis of the resonant inelastic X-ray scattering (RIXS) spectra of H2O, D2O and HDO. We demonstrate that electronically-elastic RIXS has an inherent capability to map the potential energy surface and to perform vibrational analysis of the electronic ground state in multimode systems. We show that the control and selection of vibrational excitation can be performed by tuning the X-ray frequency across core-excited molecular bands and that this is clearly reflected in the RIXS spectra. Using high level ab initio electronic structure and quantum nuclear wave packet calculations together with high resolution RIXS measurements, we discuss in detail the mode coupling, mode localization and anharmonicity in the studied systems.}, language = {en} } @article{ThielemannKuehnHoffmannFoehlisch2012, author = {Thielemann-K{\"u}hn, Nele and Hoffmann, P. and F{\"o}hlisch, Alexander}, title = {A versatile detector for total fluorescence and electron yield experiments}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4754126}, pages = {3}, year = {2012}, abstract = {The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.}, language = {en} } @article{NorellEckertVanKuikenetal.2019, author = {Norell, Jesper and Eckert, Sebastian and Van Kuiken, Benjamin E. and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Ab initio simulations of complementary K-edges and solvatization effects for detection of proton transfer in aqueous 2-thiopyridone}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {151}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {11}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5109840}, pages = {12}, year = {2019}, abstract = {The nitrogen and sulfur K-edge X-ray absorption spectra of aqueous 2-thiopyridone, a model system for excited-state proton transfer in several recent time-resolved measurements, have been simulated from ab initio molecular dynamics. Spectral signatures of the local intra- and inter-molecular structure are identified and rationalized, which facilitates experimental interpretation and optimization. In particular, comparison of aqueous and gas phase spectrum simulations assesses the previously unquantified solvatization effects, where hydrogen bonding is found to yield solvatochromatic shifts up to nearly 1 eV of the main peak positions. Thereby, while each K-edge can still decisively determine the local protonation of its core-excited site, only their combined, complementary fingerprints allow separating all of the three relevant molecular forms, giving a complete picture of the proton transfer.}, language = {en} } @article{SchickLeGuyaderPontiusetal.2016, author = {Schick, Daniel and Le Guyader, Loic and Pontius, Niko and Radu, Ilie and Kachel, Torsten and Mitzner, Rolf and Zeschke, Thomas and Schuessler-Langeheine, Christian and F{\"o}hlisch, Alexander and Holldack, Karsten}, title = {Analysis of the halo background in femtosecond slicing experiments}, series = {Journal of synchrotron radiation}, volume = {23}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5775}, doi = {10.1107/S160057751600401X}, pages = {700 -- 711}, year = {2016}, abstract = {The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated.}, language = {en} } @article{KunnusJosefssonRajkovicetal.2016, author = {Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Beye, Martin and Gr{\"u}bel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/10/103011}, pages = {9}, year = {2016}, abstract = {Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)(5) in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given-which will be covered experimentally by upcoming transform-limited x-ray sources.}, language = {en} } @article{JohanssonLeitnerBidermaneetal.2022, author = {Johansson, Fredrik O. L. and Leitner, Torsten and Bidermane, Ieva and Born, Artur and F{\"o}hlisch, Alexander and Svensson, Svante and M{\aa}rtensson, Nils and Lindblad, Andreas}, title = {Auger- and photoelectron coincidences of molecular O2 adsorbed on Ag(111)}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {256}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0368-2048}, doi = {10.1016/j.elspec.2022.147174}, pages = {6}, year = {2022}, abstract = {The oxygen on Ag(111) system has been investigated with Auger electron-photoelectron coincidence spectroscopy (APECS). The coincidence spectra between O 1s core level photoelectrons and O KLL Auger electrons have been studied together with Ag(3)d/AgM4,5NN coincidences. We also describe the electron-electron coincidence spectrometer setup, CoESCA, consisting of two angle resolved time-of-flight spectrometers at a synchrotron light source. Contributions from molecular oxygen and chemisorbed oxygen are assigned using the coincidence data, conclusions are drawn primarily from the O 1s/O KLL data. The data acquisition and treatment procedure are also outlined. The chemisorbed oxygen species observed are relevant for the catalytic ethylene oxidation.}, language = {en} } @article{EckertVazdaCruzOchmannetal.2021, author = {Eckert, Sebastian and Vaz da Cruz, Vin{\´i}cius and Ochmann, Miguel and Ahnen, Inga von and F{\"o}hlisch, Alexander and Huse, Nils}, title = {Breaking the symmetry of pyrimidine}, series = {The journal of physical chemistry letters}, volume = {12}, journal = {The journal of physical chemistry letters}, number = {35}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.1c01865}, pages = {8637 -- 8643}, year = {2021}, abstract = {Symmetry and its breaking crucially define the chemical properties of molecules and their functionality. Resonant inelastic X-ray scattering is a local electronic structure probe reporting on molecular symmetry and its dynamical breaking within the femtosecond scattering duration. Here, we study pyrimidine, a system from the C-2v point group, in an aqueous solution environment, using scattering though its 2a(2) resonance. Despite the absence of clean parity selection rules for decay transitions from in-plane orbitals, scattering channels including decay from the 7b(2) and 11a(1) orbitals with nitrogen lone pair character are a direct probe for molecular symmetry. Computed spectra of explicitly solvated molecules sampled from a molecular dynamics simulation are combined with the results of a quantum dynamical description of the X-ray scattering process. We observe dominant signatures of core-excited Jahn-Teller induced symmetry breaking for resonant excitation. Solvent contributions are separable by shortening of the effective scattering duration through excitation energy detuning.}, language = {en} }