@article{KunnusRajkovicSchrecketal.2012, author = {Kunnus, Kristjan and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Eckert, Sebastian and Beye, Martin and Suljoti, Edlira and Weniger, Christian and Kalus, Christian and Gruebel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {83}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4772685}, pages = {8}, year = {2012}, abstract = {We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.}, language = {en} } @article{KunnusJosefssonRajkovicetal.2016, author = {Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Schreck, Simon and Quevedo, Wilson and Beye, Martin and Gr{\"u}bel, Sebastian and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Gaffney, Kelly J. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and Techert, Simone and Wernet, Philippe and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/10/103011}, pages = {9}, year = {2016}, abstract = {Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)(5) in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given-which will be covered experimentally by upcoming transform-limited x-ray sources.}, language = {en} } @article{YinInhesterVeeduetal.2017, author = {Yin, Zhong and Inhester, Ludger and Veedu, Sreevidya Thekku and Quevedo, Wilson and Pietzsch, Annette and Wernet, Philippe and Groenhof, Gerrit and F{\"o}hlisch, Alexander and Grubmueller, Helmut and Techert, Simone}, title = {Cationic and Anionic Impact on the Electronic Structure of Liquid Water}, series = {The journal of physical chemistry letters}, volume = {8}, journal = {The journal of physical chemistry letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.7b01392}, pages = {3759 -- 3764}, year = {2017}, abstract = {Hydration shells around ions are crucial for many fundamental biological and chemical processes. Their local physicochemical properties are quite different from those of bulk water and hard to probe experimentally. We address this problem by combining soft X-ray spectroscopy using a liquid jet and molecular dynamics (MD) simulations together with ab initio electronic structure calculations to elucidate the water ion interaction in a MgCl2 solution at the molecular level. Our results reveal that salt ions mainly affect the electronic properties of water molecules in close vicinity and that the oxygen K-edge X-ray emission spectrum of water molecules in the first solvation shell differs significantly from that of bulk water. Ion-specific effects are identified by fingerprint features in the water X-ray emission spectra. While Mg2+ ions cause a bathochromic shift of the water lone pair orbital, the 3p orbital of the Cl- ions causes an additional peak in the water emission spectrum at around 528 eV.}, language = {en} } @article{WernetLeitnerJosefssonetal.2017, author = {Wernet, Philippe and Leitner, T. and Josefsson, Ida and Mazza, T. and Miedema, P. S. and Schroder, H. and Beye, Martin and Kunnus, K. and Schreck, S. and Radcliffe, P. and Dusterer, S. and Meyer, M. and Odelius, Michael and Fohlisch, Alexander}, title = {Communication: Direct evidence for sequential dissociation of gas-phase Fe(CO)(5) via a singlet pathway upon excitation at 266 nm}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {146}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4984774}, pages = {5}, year = {2017}, abstract = {We prove the hitherto hypothesized sequential dissociation of Fe(CO)(5) in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)(4) within the temporal resolution of the experiment and further to Fe(CO)(3) within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)(5), Fe(CO)(4), and Fe(CO)(3) showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)(5) complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes. Published by AIP Publishing.}, language = {en} } @article{PremontSchwarzSchreckIannuzzietal.2015, author = {Premont-Schwarz, Mirabelle and Schreck, Simon and Iannuzzi, Marcella and Nibbering, Erik T. J. and Odelius, Michael and Wernet, Philippe}, title = {Correlating Infrared and X-ray Absorption Energies for Molecular-Level Insight into Hydrogen Bond Making and Breaking in Solution}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {119}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.5b02954}, pages = {8115 -- 8124}, year = {2015}, abstract = {While ubiquitous, the making and breaking of hydrogen bonds in solution is notoriously difficult to study due to the associated complex changes of nuclear and electronic structures. With the aim to reduce the according uncertainty in correlating experimental observables and hydrogen-bond configurations, we combine the information from proximate methods to study the N-H center dot center dot center dot O hydrogen bond in solution. We investigate hydrogen-bonding of the N-H group of N-methylaniline with oxygen from liquid DMSO and acetone with infrared spectra in the N-H stretching region and X-ray absorption spectra at the N K-edge. We experimentally observe blue shifts of the infrared stretching band and an X-ray absorption pre-edge peak when going from DMSO to acetone. With ab initio molecular dynamics simulations and calculated spectra, we qualitatively reproduce the experimental observables but we do not reach quantitative agreement with experiment. The infrared spectra support the notion of weakening the N-H center dot center dot center dot O hydrogen bond from DMSO to acetone. However, we fail to theoretically reproduce the measured shift of the X-ray absorption pre-edge peak. We discuss possible shortcomings of the simulation models and spectrum calculations. Common features and distinct differences with the O-H center dot center dot center dot O hydrogen bond are highlighted, and the implications for monitoring hydrogen-bond breaking in solution are discussed.}, language = {en} } @article{JayNorellEckertetal.2018, author = {Jay, Raphael M. and Norell, Jesper and Eckert, Sebastian and Hantschmann, Markus and Beye, Martin and Kennedy, Brian and Quevedo, Wilson and Schlotter, William F. and Dakovski, Georgi L. and Minitti, Michael P. and Hoffmann, Matthias C. and Mitra, Ankush and Moeller, Stefan P. and Nordlund, Dennis and Zhang, Wenkai and Liang, Huiyang W. and Kunnus, Kristian and Kubicek, Katharina and Techert, Simone A. and Lundberg, Marcus and Wernet, Philippe and Gaffney, Kelly and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering}, series = {The journal of physical chemistry letters}, volume = {9}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b01429}, pages = {3538 -- 3543}, year = {2018}, abstract = {Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. pi-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences sigma-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.}, language = {en} } @article{SchreckPietzschKunnusetal.2014, author = {Schreck, Simon and Pietzsch, Annette and Kunnus, Kristjan and Kennedy, Brian and Quevedo, Wilson and Miedema, Piter S. and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {Dynamics of the OH group and the electronic structure of liquid alcohols}, series = {Structural dynamics}, volume = {1}, journal = {Structural dynamics}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4897981}, pages = {14}, year = {2014}, abstract = {In resonant inelastic soft x-ray scattering (RIXS) from molecular and liquid systems, the interplay of ground state structural and core-excited state dynamical contributions leads to complex spectral shapes that partially allow for ambiguous interpretations. In this work, we dissect these contributions in oxygen K-edge RIXS from liquid alcohols. We use the scattering into the electronic ground state as an accurate measure of nuclear dynamics in the intermediate core-excited state of the RIXS process. We determine the characteristic time in the core-excited state until nuclear dynamics give a measurable contribution to the RIXS spectral profiles to tau(dyn) = 1.2 +/- 0.8 fs. By detuning the excitation energy below the absorption resonance we reduce the effective scattering time below sdyn, and hence suppress these dynamical contributions to a minimum. From the corresponding RIXS spectra of liquid methanol, we retrieve the "dynamic-free" density of states and find that it is described solely by the electronic states of the free methanol molecule. From this and from the comparison of normal and deuterated methanol, we conclude that the split peak structure found in the lone-pair emission region at non-resonant excitation originates from dynamics in the O-H bond in the core-excited state. We find no evidence that this split peak feature is a signature of distinct ground state structural complexes in liquid methanol. However, we demonstrate how changes in the hydrogen bond coordination within the series of linear alcohols from methanol to hexanol affect the split peak structure in the liquid alcohols. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.}, language = {en} } @misc{NorellJayHantschmannetal.2018, author = {Norell, Jesper and Jay, Raphael and Hantschmann, Markus and Eckert, Sebastian and Guo, Meiyuan and Gaffney, Kelly and Wernet, Philippe and Lundberg, Marcus and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft x-ray scattering in transient photo-chemical species}, series = {Physical chemistry, chemical physics}, journal = {Physical chemistry, chemical physics}, number = {20}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/c7cp08326b}, pages = {7243 -- 7253}, year = {2018}, abstract = {We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L3-edge RIXS in the ferricyanide complex Fe(CN)63-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.}, language = {en} } @article{KunnusJosefssonSchrecketal.2013, author = {Kunnus, Kristjan and Josefsson, Ida and Schreck, Simon and Quevedo, Wilson and Miedema, Piter S. and Techert, Simone and de Groot, Frank M. F. and Odelius, Michael and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {From Ligand Fields to Molecular Orbitals: Probing the Local Valence Electronic Structure of Ni2+ in Aqueous Solution with Resonant Inelastic X-ray Scattering}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {117}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {51}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/jp4100813}, pages = {16512 -- 16521}, year = {2013}, abstract = {Bonding of the Ni2+(aq) complex is investigated with an unprecedented combination of resonant inelastic X-ray scattering (RIXS) measurements and ab initio calculations at the Ni L absorption edge. The spectra directly reflect the relative energies of the ligand-field and charge-transfer valence-excited states. They give element-specific access with atomic resolution to the ground-state electronic structure of the complex and allow quantification of ligand-field strength and 3d-3d electron correlation interactions in the Ni2+(aq) complex. The experimentally determined ligand-field strength is 10Dq = 1.1 eV. This and the Racah parameters characterizing 3d-3d Coulomb interactions B = 0.13 eV and C = 0.42 eV as readily derived from the measured energies match very well with the results from UV-vis spectroscopy. Our results demonstrate how L-edge RIXS can be used to complement existing spectroscopic tools for the investigation of bonding in 3d transition-metal coordination compounds in solution. The ab initio RASPT2 calculation is successfully used to simulate the L-edge RIXS spectra.}, language = {en} } @article{YinRajkovicVeeduetal.2015, author = {Yin, Zhong and Rajkovic, Ivan and Veedu, Sreevidya Thekku and Deinert, Sascha and Raiser, Dirk and Jain, Rohit and Fukuzawa, Hironobu and Wada, Shin-ichi and Quevedo, Wilson and Kennedy, Brian and Schreck, Simon and Pietzsch, Annette and Wernet, Philippe and Ueda, Kyoshi and F{\"o}hlisch, Alexander and Techert, Simone}, title = {Ionic solutions probed by resonant inelastic X-ray scattering}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {229}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {10-12}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2015-0610}, pages = {1855 -- 1867}, year = {2015}, abstract = {X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction.}, language = {en} }