@article{BeninaObataMehterovetal.2013, author = {Benina, Maria and Obata, Toshihiro and Mehterov, Nikolay and Ivanov, Ivan and Petrov, Veselin and Toneva, Valentina and Fernie, Alisdair R. and Gechev, Tsanko S.}, title = {Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature}, series = {Frontiers in plant science}, volume = {4}, journal = {Frontiers in plant science}, number = {1}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2013.00499}, pages = {11}, year = {2013}, abstract = {Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea's remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4 degrees C) and subsequent return to optimal temperatures (21 degrees C) was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive Arabidopsis thaliana. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21 degrees C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, rhamnose, myo-inositol, sorbitol, galactinol, erythronate, threonate, 2-oxoglutarate, citrate, and glycerol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in H. rhodopensis and raffinose in A. thaliana but the raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in H. rhodopensis and A. thaliana but sustained in T halophila after the return to optimal temperature. Thus, Haberlea's metabolome appeared primed for chilling stress but the low temperature acclimation induced additional stress-protective mechanisms. A diverse array of sugars, organic acids, and polyols constitute Haberlea's main metabolic defence mechanisms against chilling, while accumulation of amino acids and amino acid derivatives contribute to the low temperature acclimation in Arabidopsis and Thellungiella. Collectively, these results show inherent differences in the metabolomes under the ambient temperature and the strategies to respond to low temperature in the three species.}, language = {en} } @article{IvanovBeninaPetrovetal.2014, author = {Ivanov, Ivan and Benina, Maria and Petrov, Veselin and Gechev, Tsanko S. and Toneva, Valentina}, title = {Metabolic responses of gloxinia perennis to dehydration and rehydration}, series = {COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES}, volume = {67}, journal = {COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES}, number = {12}, publisher = {Publ. House of the Bulgarian Acad. of Sciences}, address = {Sofia}, issn = {1310-1331}, pages = {1657 -- 1662}, year = {2014}, abstract = {Gloxinia perennis is a species from the family Gesneriaceae with little known physiology, particularly in respect to responses to dehydration. G. perennis survived water deprivation for a month and then quickly recovered upon rehydration. The slow loss of water was in contrast with the quick dehydration of other Gesnerian species - Boea hygrometrica, Ramonda serbica, and Haber lea rhodopensis. Furthermore, a significant difference between older and younger leaves of G. perennis was observed. While the relative water content in the early stages of water deprivation was reduced to 65\% in the old leaves, it was not or slightly reduced in the young ones, implying a mechanism that protects specifically the younger leaves from dehydration. Water deprivation induced accumulation of gama-aminobutyric acid and sugars like sucrose and raffinose, but decreased the levels of amino acids such as glycine, leucine, and isoleucine. The levels of these amino acids recovered after rehydration and in some cases like glycine and isoleucine were even higher in rehydrated leaves compared with unstressed controls. We conclude that G.perennis can survive prolonged drought stress but its responses to dehydration are different from the resurrection species from Gesneriaceae. All this makes G. perennis a good model that can be used for comparative genomics and metabolomics of Gesneriads exposed to desiccation.}, language = {en} } @article{GechevBeninaObataetal.2013, author = {Gechev, Tsanko S. and Benina, Maria and Obata, Toshihiro and Tohge, Takayuki and Neerakkal, Sujeeth and Minkov, Ivan and Hille, Jacques and Temanni, Mohamed-Ramzi and Marriott, Andrew S. and Bergstr{\"o}m, Ed and Thomas-Oates, Jane and Antonio, Carla and M{\"u}ller-R{\"o}ber, Bernd and Schippers, Jos H. M. and Fernie, Alisdair R. and Toneva, Valentina}, title = {Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis}, series = {Cellular and molecular life sciences}, volume = {70}, journal = {Cellular and molecular life sciences}, number = {4}, publisher = {Springer}, address = {Basel}, issn = {1420-682X}, doi = {10.1007/s00018-012-1155-6}, pages = {689 -- 709}, year = {2013}, abstract = {Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and gamma-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.}, language = {en} } @misc{DurgudGuptaIvanovetal.2018, author = {Durgud, Meriem and Gupta, Saurabh and Ivanov, Ivan and Omidbakhshfard, Mohammad Amin and Benina, Maria and Alseekh, Saleh and Staykov, Nikola and Hauenstein, Mareike and Dijkwel, Paul P. and Hortensteiner, Stefan and Toneva, Valentina and Brotman, Yariv and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Molecular mechanisms preventing senescence in response to prolonged darkness in a desiccation-tolerant plant}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {778}, doi = {10.25932/publishup-43758}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437588}, pages = {1319 -- 1338}, year = {2018}, abstract = {The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress-and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast-and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis-and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.}, language = {en} } @article{DurgudGuptaIvanovetal.2018, author = {Durgud, Meriem and Gupta, Saurabh and Ivanov, Ivan and Omidbakhshfard, Mohammad Amin and Benina, Maria and Alseekh, Saleh and Staykov, Nikola and Hauenstein, Mareike and Dijkwel, Paul P. and Hortensteiner, Stefan and Toneva, Valentina and Brotman, Yariv and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {177}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.18.00055}, pages = {1319 -- 1338}, year = {2018}, abstract = {The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress-and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast-and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis-and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.}, language = {en} } @misc{GechevHilleWoerdenbagetal.2014, author = {Gechev, Tsanko S. and Hille, Jacques and Woerdenbag, Herman J. and Benina, Maria and Mehterov, Nikolay and Toneva, Valentina and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd}, title = {Natural products from resurrection plants: Potential for medical applications}, series = {Biotechnology advances : an international review journal ; research reviews and patent abstracts}, volume = {32}, journal = {Biotechnology advances : an international review journal ; research reviews and patent abstracts}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0734-9750}, doi = {10.1016/j.biotechadv.2014.03.005}, pages = {1091 -- 1101}, year = {2014}, abstract = {Resurrection species are a group of land plants that can tolerate extreme desiccation of their vegetative tissues during harsh drought stress, and still quickly often within hours regain normal physiological and metabolic functions following rehydration. At the molecular level, this desiccation tolerance is attributed to basal cellular mechanisms including the constitutive expression of stress-associated genes and high levels of protective metabolites present already in the absence of stress, as well as to transcriptome and metabolome reconfigurations rapidly occurring during the initial phases of drought stress. Parts of this response are conferred by unique metabolites, including a diverse array of sugars, phenolic compounds, and polyols, some of which accumulate to high concentrations within the plant cell. In addition to drought stress, these metabolites are proposed to contribute to the protection against other abiotic stresses and to an increased oxidative stress tolerance. Recently, extracts of resurrection species and particular secondary metabolites therein were reported to display biological activities of importance to medicine, with e.g. antibacterial, anticancer, antifungal, and antiviral activities, rendering them possible candidates for the development of novel drug substances as well as for cosmetics. Herein, we provide an overview of the metabolite composition of resurrection species, summarize the latest reports related to the use of natural products from resurrection plants, and outline their potential for medical applications. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).}, language = {en} } @article{MehterovBalazadehHilleetal.2012, author = {Mehterov, Nikolay and Balazadeh, Salma and Hille, Jacques and Toneva, Valentina and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes}, series = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, volume = {59}, journal = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, publisher = {Elsevier}, address = {Paris}, issn = {0981-9428}, doi = {10.1016/j.plaphy.2012.05.024}, pages = {20 -- 29}, year = {2012}, abstract = {The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ which stimulate the intracellular formation of H2O2 or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant.}, language = {en} }