@article{BallatoUbaLandgrafetal.2011, author = {Ballato, Paolo and Uba, Cornelius Eji and Landgraf, Angela and Strecker, Manfred and Sudo, Masafumi and Stockli, Daniel F. and Friedrich, Anke M. and Tabatabaei, Saeid H.}, title = {Arabia-Eurasia continental collision insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran}, series = {Geological Society of America bulletin}, volume = {123}, journal = {Geological Society of America bulletin}, number = {1-2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30091.1}, pages = {106 -- 131}, year = {2011}, abstract = {A poorly understood lag time of 15-20 m.y. exists between the initial Arabia-Eurasia continental collision in late Eocene to early Oligocene time and the acceleration of tectonic and sedimentary processes across the collision zone in the early to late Miocene. The late Eocene to Miocene-Pliocene clastic and shallow-marine sedimentary rocks of the Kond, Eyvanekey, and Semnan Basins in the Alborz Mountains (northern Iran) offer the possibility to track the evolution of this orogen in the framework of collision processes. A transition from volcaniclastic submarine deposits to shallow-marine evaporites and terrestrial sediments occurred shortly after 36 Ma in association with reversals in sediment provenance, strata tilting, and erosional unroofing. These events followed the termination of subduction arc magmatism and marked a changeover from an extensional to a contractional regime in response to initiation of continental collision with the subduction of stretched Arabian lithosphere. This early stage of collision produced topographic relief associated with shallow foreland basins, suggesting that shortening and tectonic loading occurred at low rates. Starting from the early Miocene (17.5 Ma), flexural subsidence in response to foreland basin initiation occurred. Fast sediment accumulation rates and erosional unroofing trends point to acceleration of shortening by the early Miocene. We suggest that the lag time between the initiation of continental collision (36 Ma) and the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving the "soft" collision of stretched lithosphere at first and "hard" collision following the arrival of unstretched Arabian continental litho sphere in the subduction zone.}, language = {en} } @article{GuzmanPetrinovicBrodetal.2011, author = {Guzman, S. and Petrinovic, I. A. and Brod, J. A. and Hongn, Fernando D. and Seggiaro, R. E. and Montero, C. and Carniel, Roberto and Dantas, E. L. and Sudo, Masafumi}, title = {Petrology of the Luingo caldera (SE margin of the Puna plateau) a middle Miocene window of the arc-back arc configuration}, series = {Journal of volcanology and geothermal research}, volume = {200}, journal = {Journal of volcanology and geothermal research}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0377-0273}, doi = {10.1016/j.jvolgeores.2010.12.008}, pages = {171 -- 191}, year = {2011}, abstract = {We describe the petrographic characteristics, whole-rock geochemistry and mineral chemistry of rocks from the Pucarilla-Cerro Tipillas Volcanic Complex with emphasis on the rocks belonging to the middle Miocene Luingo caldera, located in the south-eastern portion of the Central Volcanic Zone (CVZ) of the Andes. We modelled the petrogenesis of the Luingo caldera rocks as a mixture of ca. 20\% crustal magmas and 80\% of mantle magmas by AFC with recharge processes. A comparison of Luingo geochemical data with the composition of Miocene-Pliocene volcanic rocks from the broad area, points to major thickening events during the middle Miocene for the western portion and during the upper Miocene for the eastern portion of the Southern CVZ. In the eastern sector (similar to 66 degrees W) the mantle source appears to change from a spinel-lherzolite type for the middle Miocene to a garnet-lherzolite type for the upper Miocene-Pliocene magmas. The areal distribution of the volcanic products led to the recognition of approximately equivalent areas covered by volcanic rocks both in the eastern and in the western Puna borders. This indicates a broad arc, which was structurally controlled at the proto-Puna/Puna margins, whose geochemical differences are related with variations in crustal thicknesses and heterogeneous mantle sources from west to east.}, language = {en} } @article{WillnerGerdesMassonneetal.2011, author = {Willner, Arne P. and Gerdes, Axel and Massonne, Hans-Joachim and Schmidt, Alexander and Sudo, Masafumi and Thomson, Stuart N. and Vujovich, Graciela}, title = {The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure-temperature-time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina)}, series = {Contributions to mineralogy and petrology}, volume = {162}, journal = {Contributions to mineralogy and petrology}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-010-0598-8}, pages = {303 -- 327}, year = {2011}, abstract = {The Guarguaraz Complex in West Argentina formed during collision between the microplate Chilenia and South America. It is composed of neritic clastic metasediments with intercalations of metabasic and ultrabasic rocks of oceanic origin. Prograde garnet growth in metapelite and metabasite occurred between 1.2 GPa, 470 degrees C and 1.4 GPa, 530 degrees C, when the penetrative s(2)-foliation was formed. The average age of garnet crystallization of 390 +/- 2 Ma (2 sigma) was determined from three four-point Lu-Hf mineral isochrones from metapelite and metabasite samples and represents the time of collision. Peak pressure conditions are followed by a decompression path with slight heating at 0.5 GPa, 560 degrees C. Fluid release during decompression caused equilibration of mineral compositions at the rims and also aided Ar diffusion. An Ar-40/39 Ar plateau age of white mica at 353 +/- 1 Ma (1 sigma) indicates the time of cooling below 350-400 degrees C. These temperatures were attained at pressures of 0.2-0.3 GPa, indicative of an average exhumation rate of >= 1 mm/a for the period 390-353 Ma. Late hydrous influx at 0.1-0.3 GPa caused pervasive growth of sericite and chlorite and reset the Ar/Ar ages of earlier coarse-grained white mica. At 284-295 Ma, the entire basement cooled below 280 degrees C (fission track ages of zircon) after abundant post-collisional granitoid intrusion. The deeply buried epicontinental sedimentary rocks, the high peak pressure referring to a low metamorphic geotherm of 10-12 degrees C/km, and the decompression/heating path are characteristics of material buried and exhumed within a (micro) continent-continent collisional setting.}, language = {en} }