@article{XieXuGessneretal.2012, author = {Xie, Zai-Lai and Xu, Hai-Bing and Gessner, Andre and Kumke, Michael Uwe and Priebe, Magdalena and Fromm, Katharina M. and Taubert, Andreas}, title = {A transparent, flexible, ion conductive, and luminescent PMMA ionogel based on a Pt/Eu bimetallic complex and the ionic liquid [Bmim][N(Tf)(2)]}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm15862k}, pages = {8110 -- 8116}, year = {2012}, abstract = {Transparent, ion-conducting, luminescent, and flexible ionogels based on the room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl) imide [Bmim][N(Tf)(2)], a PtEu2 chromophore, and poly(methylmethacrylate) (PMMA) have been prepared. The thermal stability of the PMMA significantly increases with IL incorporation. In particular, the onset weight loss observed at ca. 229 degrees C for pure PMMA increases to 305 degrees C with IL addition. The ionogel has a high ionic conductivity of 10(-3) S cm(-1) at 373 K and exhibits a strong emission in the red with a long average luminescence decay time of tau = 890 mu s. The resulting material is a new type of soft hybrid material featuring useful thermal, optical, and ion transport properties.}, language = {en} } @article{BalischewskiChoiBehrensetal.2021, author = {Balischewski, Christian and Choi, Hyung-Seok and Behrens, Karsten and Beqiraj, Alkit and K{\"o}rzd{\"o}rfer, Thomas and Gessner, Andre and Wedel, Armin and Taubert, Andreas}, title = {Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000357}, pages = {272 -- 295}, year = {2021}, abstract = {Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.}, language = {en} } @article{TiseanuParvulescuCojocaruetal.2010, author = {Tiseanu, Carmen and Parvulescu, Vasile Ion and Cojocaru, Bogdan and Lorenz-Fonfria, Victor A. and Kumke, Michael Uwe and Gessner, Andre and Enculescu, Ion}, title = {Polymer-microporous host interactions probed by photoluminescence spectroscopy}, issn = {1463-9076}, doi = {10.1039/B922591a}, year = {2010}, abstract = {Zeolites NaY and ZSM-5 were used as hosts for styrene polymerization after ion-exchange with europium ions. The parent and hybrid, polystyrene coated Eu-NaY (Eu-NaY/PS) and Eu-ZSM-5 (Eu-ZSM-5/PS) zeolites were investigated by using thermal analysis, SEM, PXRD, FT-IR, DR-UV/Vis, steady state and time-resolved photoluminescence spectroscopy. FT-IR spectra evidenced for the interaction between the zeolitic hosts and polystyrene while the PXRD spectra supported for the presence of the polymer inside the channels/pores of Eu-NaY/PS and Eu-ZSM-5/PS materials. The optical properties of Eu-NaY/PS and Eu-ZSM-5/PS were significantly changed relative to those of the parent zeolites, giving further evidence for the presence of polymer inside zeolites. An interesting case is presented by NaY zeolite: following styrene polymerization, the polymer interacted selectively with one of the two main species co-existing inside zeolite while for ZSM-5 a similar effect was not observed.}, language = {en} } @article{AntoniouPashalidisGessneretal.2011, author = {Antoniou, Stella and Pashalidis, Ioannis and Gessner, Andre and Kumke, Michael Uwe}, title = {Spectroscopic investigations on the effect of humic acid on the formation and solubility of secondary solid phases of Ln(2)(CO3)(3)}, series = {Journal of rare earths}, volume = {29}, journal = {Journal of rare earths}, number = {6}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1002-0721}, doi = {10.1016/S1002-0721(10)60490-5}, pages = {516 -- 521}, year = {2011}, abstract = {The formation of secondary Ln(III) solid phases (e.g., Nd-2(CO3)(3) and Sm-2(CO3)(3)) was studied as a function of the humic acid concentration in 0.1 mol/L NaClO4 aqueous solution in the neutral pH range (5-6.5). The solid phases under investigation were prepared by alkaline precipitation under 100\% CO2 atmosphere and characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), time-resolved laser fluorescence spectroscopy (TRLFS), diffuse reflectance ultraviolet-visible (DR-UV-Vis), Raman spectroscopy, and solubility measurements. The spectroscopic data obtained indicated that Nd-2(CO3)(3) and Sm-2(CO3)(3) were stable and remained the solubility limiting solid phases even in the presence of increased humic acid concentration (0.5 g/L) in solution. Upon base addition in the Ln(III)-HA system, decomplexation of the previously formed Ln(III)-humate complexes and precipitation of two distinct phases occurred, the inorganic (Ln(2)(CO3)(3)) and the organic phase (HA), which was adsorbed on the particle surface of the former. Nevertheless, humic acid affected the particle size of the solid phases. Increasing humic acid concentration resulted in decreasing crystallite size of the Nd-2(CO3)(3) and increasing crystallite size of the Sm-2(CO3)(3) solid phase, and affected inversely the solubility of the solid phases. However, this impact on the solid phase properties was expected to be of minor relevance regarding the chemical behavior and migration of trivalent lanthanides and actinides in the geosphere.}, language = {en} } @article{TiseanuParvulescuParvulescuetal.2010, author = {Tiseanu, Carmen and Parvulescu, Vasile and Parvulescu, Victoria and Cotoi, Elena and Gessner, Andre and Kumke, Michael Uwe and Simon, Simion and Vasiliu, Florin}, title = {Structural and photoluminescence characterization of mesoporous silicon-phosphates}, issn = {1010-6030}, doi = {10.1016/j.jphotochem.2010.07.015}, year = {2010}, abstract = {Two different types of mesoporous silicon-phosphate supports using different surfactants (a mixture of (CH3)(3)C13H27NBr with an organophosphorus coupling molecule (HO-PO(i-C3H7)(2)) and with a co-surfactant ((C2H5)(3)(C6H5)PCl), respectively) were synthesized. Trivalent europium (Eu) ions were immobilized via ion-exchange on these supports. The resulting materials were characterized using nitrogen adsorption isotherms at -196 degrees C, thermogravimetric analysis, SEM, TEM, FT-IR, PXRD, CP/MAS. (HSi)-H-1-Si-29 and P-31 NMR, DR-UV-vis as well as steady- state and time-resolved photoluminescence spectroscopy. The results evidenced that the co-polymerization of silicon and phosphorous yielded a unique morphology in these materials. Following calcination at 450 and 900 degrees C europium- exchanged silicon-phosphates with great surface area (BET=600-705 m(2) g(-1)) and 3.4 nm sized mesopores were obtained. The differences among the optical properties of the non-calcined europium materials such as the emission lifetimes, local environment at the europium sites or the relative contribution of the upper excited levels to the total photoluminescence were assigned to the surfactants used in the synthesis. Calcination of the silicon-phosphates at higher temperatures than 450 degrees C did not induce major changes in the structural properties: in contrast, photoluminescence properties of europium were markedly improved in terms of intensity and average lifetime.}, language = {en} } @article{AntoniouPashalidisGessneretal.2011, author = {Antoniou, Stella and Pashalidis, I. and Gessner, Andre and Kumke, Michael Uwe}, title = {The effect of humic acid on the formation and solubility of secondary solid phases (Nd(OH)CO3 and Sm(OH)CO3)}, series = {Radiochimica acta : international journal for chemical aspects of nuclear science and technology}, volume = {99}, journal = {Radiochimica acta : international journal for chemical aspects of nuclear science and technology}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0033-8230}, doi = {10.1524/ract.2011.1812}, pages = {217 -- 223}, year = {2011}, abstract = {The formation of secondary Ln(III) solid phases (e.g. Nd(OH)CO3 and Sm(OH)CO3) has been studied as a function of the humic acid (HA) concentration in 0.1 M NaClO4 aqueous solution and their solubility has been investigated in the neutral pH range (6.5-8) under normal atmospheric conditions. Nd(III) and Sm(III) were selected as analogues for trivalent lanthanide and actinide ions. The solid phases under investigation have been prepared by alkaline precipitation and characterized by TGA, ATR-FTIR, XRD, TRLFS, DR-UV-Vis and Raman spectroscopy, and solubility measurements. The spectroscopic data obtained indicate that Nd(OH)CO3 and Sm(OH)CO3 are stable and remain the solubility limiting solid phases even in the presence of increased HA concentration (0.5 g/L) in solution. Upon base addition in the Ln(III)-HA system decomplexation of the previously formed Ln(III)-humate complexes and precipitation of two distinct phases occurs, the inorganic (Ln(OH)CO3) and the organic phase (HA), which is adsorbed on the particle surface of the former. Nevertheless, HA affects the particle size of the solid phases. Increasing HA concentration results in decreasing crystallite size of the Nd(OH)CO3 and increasing crystallite size of the Sm(OH)CO3 solid phase, and affects inversely the solubility of the solid phases. However, this impact on the solid phase properties is expected to be of minor relevance regarding the chemical behavior and migration of trivalent lanthanides and actinides in the geosphere.}, language = {en} } @article{RadziukSkirtachGessneretal.2011, author = {Radziuk, Darya and Skirtach, Andre and Gessner, Andre and Kumke, Michael Uwe and Zhang, Wei and M{\"o}hwald, Helmuth and Shchukin, Dmitry}, title = {Ultrasonic Approach for Formation of Erbium Oxide Nanoparticles with Variable Geometries}, series = {Langmuir}, volume = {27}, journal = {Langmuir}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la203622u}, pages = {14472 -- 14480}, year = {2011}, abstract = {Ultrasound (20 kHz, 29 W. cm(-2)) is employed to form three types of erbium oxide nanoparticles in the presence of multiwalled carbon nanotubes as a template material in water. The nanoparticles are (i) erbium carboxioxide nanoparticles deposited on the external walls of multiwalled carbon nanotubes and Er(2)O(3) in the bulk with (ii) hexagonal and (iii) spherical geometries. Each type of ultrasonically formed nanoparticle reveals Er(3+) photoluminescence from crystal lattice. The main advantage of the erbium carboxioxide nanoparticles on the carbon nanotubes is the electromagnetic emission in the visible region, which is new and not examined up to the present date. On the other hand, the photoluminescence of hexagonal erbium oxide nanoparticles is long-lived (mu s) and enables the higher energy transition ((4)S(3/2)-(4)I(15/2)), which is not observed for spherical nanoparticles. Our work is unique because it combines for the first time spectroscopy of Er(3+) electronic transitions in the host crystal lattices of nanoparticles with the geometry established by ultrasound in aqueous solution of carbon nanotubes employed as a template material. The work can be of great interest for "green" chemistry synthesis of photoluminescent nanoparticles in water.}, language = {en} }