@article{CleggGaedkeBoehreretal.2012, author = {Clegg, Mark R. and Gaedke, Ursula and B{\"o}hrer, Bertram and Spijkerman, Elly}, title = {Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum}, series = {Oecologia}, volume = {169}, journal = {Oecologia}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-011-2225-4}, pages = {609 -- 622}, year = {2012}, abstract = {In the deep, cooler layers of clear, nutrient-poor, stratified water bodies, phytoplankton often accumulate to form a thin band or "deep chlorophyll maximum" (DCM) of ecological importance. Under such conditions, these photosynthetic microorganisms may be close to their physiological compensation points and to the boundaries of their ecological tolerance. To grow and survive any resulting energy limitation, DCM species are thought to exhibit highly specialised or flexible acclimation strategies. In this study, we investigated several of the adaptable ecophysiological strategies potentially employed by one such species, Chlamydomonas acidophila: a motile, unicellular, phytoplanktonic flagellate that often dominates the DCM in stratified, acidic lakes. Physiological and behavioural responses were measured in laboratory experiments and were subsequently related to field observations. Results showed moderate light compensation points for photosynthesis and growth at 22A degrees C, relatively low maintenance costs, a behavioural preference for low to moderate light, and a decreased compensation point for photosynthesis at 8A degrees C. Even though this flagellated alga exhibited a physiologically mediated diel vertical migration in the field, migrating upwards slightly during the day, the ambient light reaching the DCM was below compensation points, and so calculations of daily net photosynthetic gain showed that survival by purely autotrophic means was not possible. Results suggested that strategies such as low-light acclimation, small-scale directed movements towards light, a capacity for mixotrophic growth, acclimation to low temperature, in situ exposure to low O-2, high CO2 and high P concentrations, and an avoidance of predation, could combine to help overcome this energetic dilemma and explain the occurrence of the DCM. Therefore, corroborating the deceptive ecophysiological complexity of this and similar organisms, only a suite of complementary strategies can facilitate the survival of C. acidophila in this DCM.}, language = {en} } @article{SpijkermanBehrendFachetal.2018, author = {Spijkerman, Elly and Behrend, Hella and Fach, Bettina and Gaedke, Ursula}, title = {Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {626}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.01.188}, pages = {1342 -- 1349}, year = {2018}, abstract = {The green microalga Chlamydomonas acidophila is an important primary producer in very acidic lakes (pH 2.0-3.5), characterized by high concentrations of ferric iron (up to 1 g total Fe L-1) and low rates of primary production. It was previously suggested that these high iron concentrations result in high iron accumulation and inhibit photosynthesis in C. acidophila. To test this, the alga was grown in sterilized lake water and in medium with varying total iron concentrations under limiting and sufficient inorganic phosphorus (Pi) supply, because Pi is an important growth limiting nutrient in acidic waters. Photosynthesis and growth of C. acidophila as measured over 5 days were largely unaffected by high total iron concentrations and only decreased if free ionic Fe3+ concentrations exceeded 100 mg Fe3+ L-1. Although C. acidophila was relatively rich in iron (up to 5 mmol Fe: mol C), we found no evidence of iron toxicity. In contrast, a concentration of 260 mg total Fe L-1 (i.e. 15 mg free ionic Fe3+ L-1), which is common in many acidic lakes, reduced Pi-incorporation by 50\% and will result in Pi-limited photosynthesis. The resulting Pi-limitation present at high iron and Pi concentrations was illustrated by elevated maximum Pi-uptake rates. No direct toxic effects of high iron were found, but unfavourable chemical Pi-speciation reduced growth of the acidophile alga.}, language = {en} } @article{QuintanaArimBadosaetal.2015, author = {Quintana, Xavier D. and Arim, Matias and Badosa, Anna and Maria Blanco, Jose and Boix, Dani and Brucet, Sandra and Compte, Jordi and Egozcue, Juan J. and de Eyto, Elvira and Gaedke, Ursula and Gascon, Stephanie and Gil de Sola, Luis and Irvine, Kenneth and Jeppesen, Erik and Lauridsen, Torben L. and Lopez-Flores, Rocio and Mehner, Thomas and Romo, Susana and Sondergaard, Martin}, title = {Predation and competition effects on the size diversity of aquatic communities}, series = {Aquatic sciences : research across boundaries}, volume = {77}, journal = {Aquatic sciences : research across boundaries}, number = {1}, publisher = {Springer}, address = {Basel}, issn = {1015-1621}, doi = {10.1007/s00027-014-0368-1}, pages = {45 -- 57}, year = {2015}, abstract = {Body size has been widely recognised as a key factor determining community structure in ecosystems. We analysed size diversity patterns of phytoplankton, zooplankton and fish assemblages in 13 data sets from freshwater and marine sites with the aim to assess whether there is a general trend in the effect of predation and resource competition on body size distribution across a wide range of aquatic ecosystems. We used size diversity as a measure of the shape of size distribution. Size diversity was computed based on the Shannon-Wiener diversity expression, adapted to a continuous variable, i.e. as body size. Our results show that greater predation pressure was associated with reduced size diversity of prey at all trophic levels. In contrast, competition effects depended on the trophic level considered. At upper trophic levels (zooplankton and fish), size distributions were more diverse when potential resource availability was low, suggesting that competitive interactions for resources promote diversification of aquatic communities by size. This pattern was not found for phytoplankton size distributions where size diversity mostly increased with low zooplankton grazing and increasing nutrient availability. Relationships we found were weak, indicating that predation and competition are not the only determinants of size distribution. Our results suggest that predation pressure leads to accumulation of organisms in the less predated sizes, while resource competition tends to favour a wider size distribution.}, language = {en} }