@phdthesis{Sommerfeld2015, author = {Sommerfeld, Anja}, title = {Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85347}, school = {Universit{\"a}t Potsdam}, pages = {VII, 110, vi}, year = {2015}, abstract = {The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical 'baroclinic' terms as the main contributors to the IV tendency, with the horizontal 'baroclinic' term producing and the vertical 'baroclinic' term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM.}, language = {en} } @phdthesis{Polanski2011, author = {Polanski, Stefan}, title = {Simulation der indischen Monsunzirkulation mit dem Regionalen Klimamodell HIRHAM}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52508}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {In dieser Arbeit wird das regionale Klimamodell HIRHAM mit einer horizontalen Aufl{\"o}sung von 50 km und 19 vertikalen Schichten erstmals auf den asiatischen Kontinent angewendet, um die indische Monsunzirkulation unter rezenten und pal{\"a}oklimatischen Bedingungen zu simulieren. Das Integrationsgebiet des Modells erstreckt sich von etwa 0ºN - 50ºN und 42ºE - 110ºE und bedeckt dabei sowohl die hohe Topographie des Himalajas und Tibet Plateaus als auch den n{\"o}rdlichen Indischen Ozean. Das Ziel besteht in der Beschreibung der regionalen Kopplung zwischen der Monsunzirkulation und den orographischen sowie diabatischen Antriebsmechanismen. Eine 44-j{\"a}hrige Modellsimulation von 1958-2001, die am seitlichen und unteren Rand von ECMWF Reanalysen (ERA40) angetrieben wird, bildet die Grundlage f{\"u}r die Validierung der Modellergebnisse mit Beobachtungen auf der Basis von Stations- und Gitterdatens{\"a}tzen. Der Fokus liegt dabei auf der atmosph{\"a}rischen Zirkulation, der Temperatur und dem Niederschlag im Sommer- und Wintermonsun, wobei die Qualit{\"a}t des Modells sowohl in Bezug zur langfristigen und dekadischen Klimatologie als auch zur interannuellen Variabilit{\"a}t evaluiert wird. Im Zusammenhang mit einer realistischen Reproduktion der Modelltopographie kann f{\"u}r die Muster der Zirkulation und Temperatur eine gute {\"U}bereinstimmung zwischen Modell und Daten nachgewiesen werden. Der simulierte Niederschlag zeigt eine bessere {\"U}bereinstimmung mit einem hoch aufgel{\"o}sten Gitterdatensatz {\"u}ber der Landoberfl{\"a}che Zentralindiens und in den Hochgebirgsregionen, der den Vorteil des Regionalmodells gegen{\"u}ber der antreibenden Reanalyse hervorhebt. In verschiedenen Fall- und Sensitivit{\"a}tsstudien werden die wesentlichen Antriebsfaktoren des indischen Monsuns (Meeresoberfl{\"a}chentemperaturen, St{\"a}rke des winterlichen Sibirischen Hochs und Anomalien der Bodenfeuchte) untersucht. Die Ergebnisse machen deutlich, dass die Simulation dieser Mechanismen auch mit einem Regionalmodell sehr schwierig ist, da die Komplexit{\"a}t des Monsunsystems hochgradig nichtlinear ist und die vor allem subgridskalig wirkenden Prozesse im Modell noch nicht ausreichend parametrisiert und verstanden sind. Ein pal{\"a}oklimatisches Experiment f{\"u}r eine 44-j{\"a}hrige Zeitscheibe im mittleren Holoz{\"a}n (etwa 6000 Jahre vor heute), die am Rand von einer globalen ECHAM5 Simulation angetrieben wird, zeigt markante Ver{\"a}nderungen in der Intensit{\"a}t des Monsuns durch die unterschiedliche solare Einstrahlung, die wiederum Einfl{\"u}sse auf die SST, die Zirkulation und damit auf die Niederschlagsmuster hat.}, language = {de} }