@phdthesis{Rembe2023, author = {Rembe, Johannes}, title = {Hercynian to Eocimmerian evolution of the North Pamir in Central Asia}, doi = {10.25932/publishup-59751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597510}, school = {Universit{\"a}t Potsdam}, pages = {xxvi, 154, CX}, year = {2023}, abstract = {The North Pamir, part of the India-Asia collision zone, essentially formed during the late Paleozoic to late Triassic-early Jurassic. Coeval to the subduction of the Turkestan ocean—during the Carboniferous Hercynian orogeny in the Tien Shan—a portion of the Paleo-Tethys ocean subducted northward and lead to the formation and obduction of a volcanic arc. This Carboniferous North Pamir arc is of Andean style in the western Darvaz segment and trends towards an intraoceanic arc in the eastern, Oytag segment. A suite of arc-volcanic rocks and intercalated, marine sediments together with intruded voluminous plagiogranites (trondhjemite and tonalite) and granodiorites was uplifted and eroded during the Permian, as demonstrated by widespread sedimentary unconformities. Today it constitutes a major portion of the North Pamir. In this work, the first comprehensive Uranium-Lead (U-Pb) laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) radiometric age data are presented along with geochemical data from the volcanic and plutonic rocks of the North Pamir volcanic arc. Zircon U-Pb data indicate a major intrusive phase between 340 and 320 Ma. The magmatic rocks show an arc-signature, with more primitive signatures in the Oytag segment compared to the Darvaz segment. Volcanic rocks in the Chinese North Pamir were indirectly dated by determining the age of ocean floor alteration. We investigate calcite filled vesicles and show that oxidative sea water and the basaltic host rock are major trace element sources. The age of ocean floor alteration, within a range of 25 Ma, constrains the extrusion age of the volcanic rocks. In the Chinese Pamir, arc-volcanic basalts have been dated to the Visean-Serpukhovian boundary. This relates the North Pamir volcanic arc to coeval units in the Tien Shan. Our findings further question the idea of a continuous Tarim-Tajik continent in the Paleozoic. From the Permian (Guadalupian) on, a progressive sea-retreat led to continental conditions in the northeastern Pamir. Large parts of Central Asia were affected by transcurrent tectonics, while subduction of the Paleo-Tethys went on south of the accreted North Pamir arc, likely forming an accretionary wedge, representing an early stage of the later Karakul-Mazar tectonic unit. Graben systems dissected the Permian carbonate platforms, that formed on top of the uplifted Carboniferous arc in the central and western North Pamir. A continental graben formed in the eastern North Pamir. Zircon U-Pb dating suggest initiation of volcanic activity at ~260 Ma. Extensional tectonics prevailed throughout the Triassic, forming the Hindukush-North Pamir rift system. New geochemistry and zircon U-Pb data tie volcanic rocks, found in the Chinese Pamir, to coeval arc-related plutonic rocks found within the Karakul-Mazar arc-accretionary complex. The sedimentary environment in the continental North Pamir rift evolved from an alluvial plain, lake dominated environment in the Guadalupian to a coarser-clastic, alluvial, braided river dominated in the Triassic. Volcanic activity terminated in the early Jurassic. We conducted Potassium-Argon (K-Ar) fine-fraction dating on the Shala Tala thrust fault, a major structure juxtaposing Paleozoic marine units of lower greenschist to amphibolite facies conditions against continental Permian deposits. Fault slip under epizonal conditions is dated to 204.8 ± 3.7 Ma (2σ), implying Rhaetian nappe emplacement. This pinpoints the Central-North Pamir collision, since the Shala Tala thrust was a back-thrust at that time.}, language = {en} } @phdthesis{Kudriavtseva2023, author = {Kudriavtseva, Anna}, title = {Interactions between tectonics, climate, and surface processes in the Kyrgyz Tian Shan}, doi = {10.25932/publishup-60372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-603728}, school = {Universit{\"a}t Potsdam}, pages = {XV, 164}, year = {2023}, abstract = {During the Cenozoic, global cooling and uplift of the Tian Shan, Pamir, and Tibetan plateau modified atmospheric circulation and reduced moisture supply to Central Asia. These changes led to aridification in the region during the Neogene. Afterwards, Quaternary glaciations led to modification of the landscape and runoff. In the Issyk-Kul basin of the Kyrgyz Tian Shan, the sedimentary sequences reflect the development of the adjacent ranges and local climatic conditions. In this work, I reconstruct the late Miocene - early Pleistocene depositional environment, climate, and lake development in the Issyk-Kul basin using facies analyses and stable δ18O and δ13C isotopic records from sedimentary sections dated by magnetostratigraphy and 26Al/10Be isochron burial dating. Also, I present 10Be-derived millennial-scale modern and paleo-denudation rates from across the Kyrgyz Tian Shan and long-term exhumation rates calculated from published thermochronology data. This allows me to examine spatial and temporal changes in surface processes in the Kyrgyz Tian Shan. In the Issyk-Kul basin, the style of fluvial deposition changed at ca. 7 Ma, and aridification in the basin commenced concurrently, as shown by magnetostratigraphy and the δ18O and δ13C data. Lake formation commenced on the southern side of the basin at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. 26Al/10Be isochron burial dating and paleocurrent analysis show that the Kungey range to the north of the basin grew eastward, leading to a change from fluvial-alluvial deposits to proximal alluvial fan conglomerates at 5-4 Ma in the easternmost part of the basin. This transition occurred at 2.6-2.8 Ma on the southern side of the basin, synchronously with the intensification of the Northern Hemisphere glaciation. The paleo-denudation rates from 2.7-2.0 Ma are as low as long-term exhumation rates, and only the millennial-scale denudation rates record an acceleration of denudation. This work concludes that the growth of the ranges to the north of the basin led to creation of the topographic barrier at ca. 7 Ma and a subsequent aridification in the Issyk-Kul basin. Increased subsidence and local tectonically-induced river system reorganization on the southern side of the basin enabled lake formation at ca. 5 Ma, while growth of the Kungey range blocked westward-draining rivers and led to sediment starvation and lake expansion. Denudational response of the Kyrgyz Tian Shan landscape is delayed due to aridity and only substantial cooling during the late Quaternary glacial cycles led to notable acceleration of denudation. Currently, increased glacier reduction and runoff controls a more rapid denudation of the northern slope of the Terskey range compared to other ranges of the Kyrgyz Tian Shan.}, language = {en} } @phdthesis{Sorrel2006, author = {Sorrel, Philippe}, title = {The Aral Sea : a palaeoclimate archive}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7807}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The intracontinental endorheic Aral Sea, remote from oceanic influences, represents an excellent sedimentary archive in Central Asia that can be used for high-resolution palaeoclimate studies. We performed palynological, microfacies and geochemical analyses on sediment cores retrieved from Chernyshov Bay, in the NW part of the modern Large Aral Sea. The most complete sedimentary sequence, whose total length is 11 m, covers approximately the past 2000 years of the late Holocene. High-resolution palynological analyses, conducted on both dinoflagellate cysts assemblages and pollen grains, evidenced prominent environmental change in the Aral Sea and in the catchment area. The diversity and the distribution of dinoflagellate cysts within the assemblages characterized the sequence of salinity and lake-level changes during the past 2000 years. Due to the strong dependence of the Aral Sea hydrology to inputs from its tributaries, the lake levels are ultimately linked to fluctuations in meltwater discharges during spring. As the amplitude of glacial meltwater inputs is largely controlled by temperature variations in the Tien Shan and Pamir Mountains during the melting season, salinity and lake-level changes of the Aral Sea reflect temperature fluctuations in the high catchment area during the past 2000 years. Dinoflagellate cyst assemblages document lake lowstands and hypersaline conditions during ca. 0-425 AD, 920-1230 AD, 1500 AD, 1600-1650 AD, 1800 AD and since the 1960s, whereas oligosaline conditions and higher lake levels prevailed during the intervening periods. Besides, reworked dinoflagellate cysts from Palaeogene and Neogene deposits happened to be a valuable proxy for extreme sheet-wash events, when precipitation is enhanced over the Aral Sea Basin as during 1230-1450 AD. We propose that the recorded environmental changes are related primarily to climate, but may have been possibly amplified during extreme conditions by human-controlled irrigation activities or military conflicts. Additionally, salinity levels and variations in solar activity show striking similarities over the past millennium, as during 1000-1300 AD, 1450-1550 and 1600-1700 AD when low lake levels match well with an increase in solar activity thus suggesting that an increase in the net radiative forcing reinforced past Aral Sea's regressions. On the other hand, we used pollen analyses to quantify changes in moisture conditions in the Aral Sea Basin. High-resolution reconstruction of precipitation (mean annual) and temperature (mean annual, coldest versus warmest month) parameters are performed using the "probability mutual climatic spheres" method, providing the sequence of climate change for the past 2000 years in western Central Asia. Cold and arid conditions prevailed during ca. 0-400 AD, 900-1150 AD and 1500-1650 AD with the extension of xeric vegetation dominated by steppe elements. Conversely, warmer and less arid conditions occurred during ca. 400-900 AD and 1150-1450 AD, where steppe vegetation was enriched in plants requiring moister conditions. Change in the precipitation pattern over the Aral Sea Basin is shown to be predominantly controlled by the Eastern Mediterranean (EM) cyclonic system, which provides humidity to the Middle East and western Central Asia during winter and early spring. As the EM is significantly regulated by pressure modulations of the North Atlantic Oscillation (NAO) when the system is in a negative phase, a relationship between humidity over western Central Asia and the NAO is proposed. Besides, laminated sediments record shifts in sedimentary processes during the late Holocene that reflect pronounced changes in taphonomic dynamics. In Central Asia, the frequency of dust storms occurring during spring when the continent is heating up is mostly controlled by the intensity and the position of the Siberian High (SH) Pressure System. Using titanium (Ti) content in laminated sediments as a proxy for aeolian detrital inputs, changes in wind dynamics over Central Asia is documented for the past 1500 years, offering the longest reconstruction of SH variability to date. Based on high Ti content, stronger wind dynamics are reported from 450-700 AD, 1210-1265 AD, 1350-1750 AD and 1800-1975 AD, reporting a stronger SH during spring. In contrast, lower Ti content from 1750-1800 AD and 1980-1985 AD reflect a diminished influence of the SH and a reduced atmospheric circulation. During 1180-1210 AD and 1265-1310 AD, considerably weakened atmospheric circulation is evidenced. As a whole, though climate dynamics controlled environmental changes and ultimately modulated changes in the western Central Asia's climate system, it is likely that changes in solar activity also had an impact by influencing to some extent the Aral Sea's hydrology balance and also regional temperature patterns in the past.
The appendix of the thesis is provided via the HTML document as ZIP download.}, subject = {Aralsee}, language = {en} }