@phdthesis{CerdaDonate2020, author = {Cerd{\´a} Do{\~n}ate, Elisa}, title = {Microfluidics for the study of magnetotactic bacteria towards single-cell analysis}, school = {Universit{\"a}t Potsdam}, pages = {X, 92}, year = {2020}, abstract = {Magnetotactic bacteria comprise a heterogeneous group of Gram negative bacteria which share the ability to synthesise intracellular magnetic nanoparticles surrounded by a lipid bilayer, known as magnetosomes, which are arranged in linear chains. The bacteria exert a unique level of control onto the biomineralization of these nanoparticles, which is seen in the controlled size and shape they have. These characteristics have attracted great attention on understanding the process by which the bacteria synthesise the magnetosomes. Moreover, the magnetosome chain impart the bacteria with a net magnetic dipole which makes them susceptible to interact with magnetic fields and thus orient with the Earth's magnetic field. This feature has attracted as well much interest to understand how the swimming motility of these microorganisms is affected by the presence of magnetic fields. Most of the studies performed in these bacteria so far have been conducted in the traditional manner using large populations of cells. Such studies have the disadvantage of averaging many different individuals with heterogeneous behaviours and fail to consider individual variations. In addition, in large populations each bacterium will be subjected to a different microenvironment that will influence the bacterial behaviour, but which cannot be defined using these traditional methods. In this thesis, different microfluidic platforms are proposed to overcome these limitations and to offer the possibility to study magnetotactic bacteria in defined environments and down to a single-cell resolution. First, a sediment-like microfluidic platform is presented with the purpose of mimicking the porous environment they bacteria naturally dwell in. The platform allows to observe via transmitted light microscopy that bacterial navigation in crowded environments is enhanced by the Earth's magnetic field strengths (B = 50 μT) rather than by null (B = 0 μT) or higher magnetic fields (B = 500 μT). Second, a microfluidic system to confine single-bacterial cells in physically defined environments is presented. The system allows to study via transmitted light microscopy the interplay between wall curvature, magnetic fields and bacterial speed affect the motion of a confined bacterium, and shows how bacterial trajectories depend on those three parameters. Third, a microfluidic platform to conduct semi in vivo magnetosome nucleation with a single-cell resolution via X-ray fluorescence is fabricated. It is shown that signal arising from magnetosome full chains can be observed individually in each bacterium. Finally, the iron uptake kinetics of a single bacterium are studied via a fluorescent reporter through confocal microscopy. Two different approaches are used for this: one of the previously mentioned platforms, as well as giant lipid vesicles. It is observed how iron uptake rates vary between cells, as well as how these rates are consistent with magnetosome formation taking place within some hours. The present thesis shows therefore how microfluidic technologies can be implemented for the study of magnetotactic bacteria at different degrees, and the level of resolution that can be attained by going into the single- cell scale.
}, language = {en} }