@article{WerhahnPfrommerGirichidisetal.2021, author = {Werhahn, Maria and Pfrommer, Christoph and Girichidis, Philipp and Puchwein, Ewald and Pakmor, R{\"u}diger}, title = {Cosmic rays and non-thermal emission in simulated galaxies}, series = {Monthly notices of the Royal Astronomical Society}, volume = {505}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab1324}, pages = {3273 -- 3294}, year = {2021}, abstract = {Current-day cosmic ray (CR) propagation studies use static Milky Way models and fit parametrized source distributions to data. Instead, we use three-dimensional magnetohydrodynamic (MHD) simulations of isolated galaxies with the moving-mesh code arepo that self-consistently accounts for hydrodynamic effects of CR protons. In post-processing, we calculate their steady-state spectra, taking into account all relevant loss processes. We show that this steady-state assumption is well justified in the disc and generally for regions that emit non-thermal radio and gamma rays. Additionally, we model the spectra of primary electrons, accelerated by supernova remnants, and secondary electrons and positrons produced in hadronic CR proton interactions with the gas. We find that proton spectra above 10 GeV only weakly depend on galactic radius, while they acquire a radial dependence at lower energies due to Coulomb interactions. Radiative losses steepen the spectra of primary CR electrons in the central galactic regions, while diffusive losses dominate in the outskirts. Secondary electrons exhibit a steeper spectrum than primaries because they originate from the transported steeper CR proton spectra. Consistent with Voyager-1 and AMS-02 data, our models (i) show a turnover of proton spectra below GeV energies due to Coulomb interactions so that electrons start to dominate the total particle spectra and (ii) match the shape of the positron fraction up to 10 GeV. We conclude that our steady-state CR modelling in MHD CR galaxy simulations is sufficiently realistic to capture the dominant transport effects shaping their spectra, arguing for a full MHD treatment to accurately model CR transport in the future.}, language = {en} } @article{WerhahnPfrommerGirichidis2021, author = {Werhahn, Maria and Pfrommer, Christoph and Girichidis, Philipp}, title = {Cosmic rays and non-thermal emission in simulated galaxies - III. Probing cosmic-ray calorimetry with radio spectra and the FIR-radio correlation}, series = {Monthly notices of the Royal Astronomical Society}, volume = {508}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab2535}, pages = {4072 -- 4095}, year = {2021}, abstract = {An extinction-free estimator of the star formation rate (SFR) of galaxies is critical for understanding the high-redshift universe. To this end, the nearly linear, tight correlation of far-infrared (FIR), and radio luminosity of star-forming galaxies is widely used. While the FIR is linked to massive star formation, which also generates shock-accelerated cosmic-ray (CR) electrons and radio synchrotron emission, a detailed understanding of the underlying physics is still lacking. Hence, we perform three-dimensional magnetohydrodynamical (MHD) simulations of isolated galaxies over a broad range of halo masses and SFRs using the moving-mesh code AREPO, and evolve the CR proton energy density self-consistently. In post-processing, we calculate the steady-state spectra of primary, shock-accelerated and secondary CR electrons, which result from hadronic CR proton interactions with the interstellar medium. The resulting total radio luminosities correlate with the FIR luminosities as observed and are dominated by primary CR electrons if we account for anisotropic CR diffusion. The increasing contribution of secondary emission up to 30 per cent in starbursts is compensated by the larger bremsstrahlung and Coulomb losses. CR electrons are in the calorimetric limit and lose most of their energy through inverse Compton interactions with star light and cosmic microwave background (CMB) photons while less energy is converted into synchrotron emission. This implies steep steady-state synchrotron spectra in starbursts. Interestingly, we find that thermal free-free emission flattens the total radio spectra at high radio frequencies and reconciles calorimetric theory with observations while free-free absorption explains the observed low-frequency flattening towards the central regions of starbursts.}, language = {en} } @phdthesis{Werhahn2023, author = {Werhahn, Maria}, title = {Simulating galaxy evolution with cosmic rays: the multi-frequency view}, doi = {10.25932/publishup-57285}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572851}, school = {Universit{\"a}t Potsdam}, pages = {5, 220}, year = {2023}, abstract = {Cosmic rays (CRs) constitute an important component of the interstellar medium (ISM) of galaxies and are thought to play an essential role in governing their evolution. In particular, they are able to impact the dynamics of a galaxy by driving galactic outflows or heating the ISM and thereby affecting the efficiency of star-formation. Hence, in order to understand galaxy formation and evolution, we need to accurately model this non-thermal constituent of the ISM. But except in our local environment within the Milky Way, we do not have the ability to measure CRs directly in other galaxies. However, there are many ways to indirectly observe CRs via the radiation they emit due to their interaction with magnetic and interstellar radiation fields as well as with the ISM. In this work, I develop a numerical framework to calculate the spectral distribution of CRs in simulations of isolated galaxies where a steady-state between injection and cooling is assumed. Furthermore, I calculate the non-thermal emission processes arising from the modelled CR proton and electron spectra ranging from radio wavelengths up to the very high-energy gamma-ray regime. I apply this code to a number of high-resolution magneto-hydrodynamical (MHD) simulations of isolated galaxies, where CRs are included. This allows me to study their CR spectra and compare them to observations of the CR proton and electron spectra by the Voyager-1 satellite and the AMS-02 instrument in order to reveal the origin of the measured spectral features. Furthermore, I provide detailed emission maps, luminosities and spectra of the non-thermal emission from our simulated galaxies that range from dwarfs to Milk-Way analogues to starburst galaxies at different evolutionary stages. I successfully reproduce the observed relations between the radio and gamma-ray luminosities with the far-infrared (FIR) emission of star-forming (SF) galaxies, respectively, where the latter is a good tracer of the star-formation rate. I find that highly SF galaxies are close to the limit where their CR population would lose all of their energy due to the emission of radiation, whereas CRs tend to escape low SF galaxies more quickly. On top of that, I investigate the properties of CR transport that are needed in order to match the observed gamma-ray spectra. Furthermore, I uncover the underlying processes that enable the FIR-radio correlation (FRC) to be maintained even in starburst galaxies and find that thermal free-free-emission naturally explains the observed radio spectra in SF galaxies like M82 and NGC 253 thus solving the riddle of flat radio spectra that have been proposed to contradict the observed tight FRC. Lastly, I scrutinise the steady-state modelling of the CR proton component by investigating for the first time the influence of spectrally resolved CR transport in MHD simulations on the hadronic gamma-ray emission of SF galaxies revealing new insights into the observational signatures of CR transport both spectrally and spatially.}, language = {en} }