@article{KorupSeidemannMohr2019, author = {Korup, Oliver and Seidemann, Jan and Mohr, Christian Heinrich}, title = {Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile}, series = {Nature geoscience}, volume = {12}, journal = {Nature geoscience}, number = {4}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/s41561-019-0315-9}, pages = {284 -- 289}, year = {2019}, abstract = {Large explosive eruptions can bury landscapes beneath thick layers of tephra. Rivers subsequently overloaded with excess pyroclastic sediments have some of the highest reported specific sediment yields. Much less is known about how hillslopes respond to tephra loads. Here, we report a pulsed and distinctly delayed increase in landslide activity following the eruptions of the Chaiten (2008) and Puyehue-Cordon Caulle (2011) volcanoes in southern Chile. Remote-sensing data reveal that land-slides clustered in densely forested hillslopes mostly two to six years after being covered by tephra. This lagged instability is consistent with a gradual loss of shear strength of decaying tree roots in areas of high tephra loads. Surrounding areas with comparable topography, forest cover, rainfall and lithology maintained landslide rates roughly ten times lower. The landslides eroded the landscape by up to 4.8 mm on average within 30 km of both volcanoes, mobilizing up to 1.6 MtC at rates of about 265 tC km(-2) yr(-1). We suggest that these yields may reinforce the elevated river loads of sediment and organic carbon in the decade after the eruptions. We recommend that studies of post-eruptive mass fluxes and hazards include lagged landslide responses of tephra-covered forested hillslopes, to avoid substantial underestimates.}, language = {en} } @article{TolorzaMohrCarretieretal.2019, author = {Tolorza, Violeta and Mohr, Christian Heinrich and Carretier, Sebastien and Serey, Amador and Sepulveda, Sergio A. and Tapia, Joseline and Pinto, Luisa}, title = {Suspended sediments in chilean rivers reveal low postseismic erosion after the maule earthquake (Mw 8.8) during a severe drought}, series = {Journal of geophysical research : Earth surface}, volume = {124}, journal = {Journal of geophysical research : Earth surface}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2018JF004766}, pages = {1378 -- 1397}, year = {2019}, abstract = {We address the question of whether all large-magnitude earthquakes produce an erosion peak in the subaerial components of fluvial catchments. We evaluate the sediment flux response to the Maule earthquake in the Chilean Andes (Mw 8.8) using daily suspended sediment records from 31 river gauges. The catchments cover drainage areas of 350 to around 10,000 km(2), including a wide range of topographic slopes and vegetation cover of the Andean western flank. We compare the 3- to 8-year postseismic record of sediment flux to each of the following preseismic periods: (1) all preseismic data, (2) a 3-year period prior to the seismic event, and (3) the driest preseismic periods, as drought conditions prevailed in the postseismic period. Following the earthquake, no increases in suspended sediment flux were observed for moderate to high percentiles of the streamflow distribution (mean, median, and >= 75th percentile). However, more than half of the examined stations showed increased sediment flux during baseflow. By using a Random Forest approach, we evaluate the contributions of seismic intensities, peak ground accelerations, co-seismic landslides, hydroclimatic conditions, topography, lithology, and land cover to explain the observed changes in suspended sediment concentration and fluxes. We find that the best predictors are hillslope gradient, low-vegetation cover, and changes in streamflow discharge. This finding suggests a combined first-order control of topography, land cover, and hydrology on the catchment-wide erosion response. We infer a reduced sediment connectivity due to the postseismic drought, which increased the residence time of sediment detached and remobilized following the Maule earthquake.}, language = {en} }