@misc{MirusEbelMohretal.2017, author = {Mirus, Benjamin B. and Ebel, Brian A. and Mohr, Christian Heinrich and Zegre, Nicolas}, title = {Disturbance Hydrology: Preparing for an Increasingly Disturbed Future}, series = {Water resources research}, volume = {53}, journal = {Water resources research}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2017WR021084}, pages = {10007 -- 10016}, year = {2017}, abstract = {This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.}, language = {en} } @phdthesis{Mohr2013, author = {Mohr, Christian Heinrich}, title = {Hydrological and erosion responses to man-made and natural disturbances : insights from forested catchments in South-central Chile}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70146}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Logging and large earthquakes are disturbances that may significantly affect hydrological and erosional processes and process rates, although in decisively different ways. Despite numerous studies that have documented the impacts of both deforestation and earthquakes on water and sediment fluxes, a number of details regarding the timing and type of de- and reforestation; seismic impacts on subsurface water fluxes; or the overall geomorphic work involved have remained unresolved. The main objective of this thesis is to address these shortcomings and to better understand and compare the hydrological and erosional process responses to such natural and man-made disturbances. To this end, south-central Chile provides an excellent natural laboratory owing to its high seismicity and the ongoing conversion of land into highly productive plantation forests. In this dissertation I combine paired catchment experiments, data analysis techniques, and physics-based modelling to investigate: 1) the effect of plantation forests on water resources, 2) the source and sink behavior of timber harvest areas in terms of overland flow generation and sediment fluxes, 3) geomorphic work and its efficiency as a function of seasonal logging, 4) possible hydrologic responses of the saturated zone to the 2010 Maule earthquake and 5) responses of the vadose zone to this earthquake. Re 1) In order to quantify the hydrologic impact of plantation forests, it is fundamental to first establish their water balances. I show that tree species is not significant in this regard, i.e. Pinus radiata and Eucalyptus globulus do not trigger any decisive different hydrologic response. Instead, water consumption is more sensitive to soil-water supply for the local hydro-climatic conditions. Re 2) Contradictory opinions exist about whether timber harvest areas (THA) generate or capture overland flow and sediment. Although THAs contribute significantly to hydrology and sediment transport because of their spatial extent, little is known about the hydrological and erosional processes occurring on them. I show that THAs may act as both sources and sinks for overland flow, which in turn intensifies surface erosion. Above a rainfall intensity of ~20 mm/h, which corresponds to <10\% of all rainfall, THAs may generate runoff whereas below that threshold they remain sinks. The overall contribution of Hortonian runoff is thus secondary considering the local rainfall regime. The bulk of both runoff and sediment is generated by Dunne, saturation excess, overland flow. I also show that logging may increase infiltrability on THAs which may cause an initial decrease in streamflow followed by an increase after the groundwater storage has been refilled. Re 3) I present changes in frequency-magnitude distributions following seasonal logging by applying Quantile Regression Forests at hitherto unprecedented detail. It is clearly the season that controls the hydro-geomorphic work efficiency of clear cutting. Logging, particularly dry seasonal logging, caused a shift of work efficiency towards less flashy and mere but more frequent moderate rainfall-runoff events. The sediment transport is dominated by Dunne overland flow which is consistent with physics-based modelling using WASA-SED. Re 4) It is well accepted that earthquakes may affect hydrological processes in the saturated zone. Assuming such flow conditions, consolidation of saturated saprolitic material is one possible response. Consolidation raises the hydraulic gradients which may explain the observed increase in discharge following earthquakes. By doing so, squeezed water saturates the soil which in turn increases the water accessible for plant transpiration. Post-seismic enhanced transpiration is reflected in the intensification of diurnal cycling. Re 5) Assuming unsaturated conditions, I present the first evidence that the vadose zone may also respond to seismic waves by releasing pore water which in turn feeds groundwater reservoirs. By doing so, water tables along the valley bottoms are elevated thus providing additional water resources to the riparian vegetation. By inverse modelling, the transient increase in transpiration is found to be 30-60\%. Based on the data available, both hypotheses, are not testable. Finally, when comparing the hydrological and erosional effects of the Maule earthquake with the impact of planting exotic plantation forests, the overall observed earthquake effects are comparably small, and limited to short time scales.}, language = {en} } @article{KorupSeidemannMohr2019, author = {Korup, Oliver and Seidemann, Jan and Mohr, Christian Heinrich}, title = {Increased landslide activity on forested hillslopes following two recent volcanic eruptions in Chile}, series = {Nature geoscience}, volume = {12}, journal = {Nature geoscience}, number = {4}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/s41561-019-0315-9}, pages = {284 -- 289}, year = {2019}, abstract = {Large explosive eruptions can bury landscapes beneath thick layers of tephra. Rivers subsequently overloaded with excess pyroclastic sediments have some of the highest reported specific sediment yields. Much less is known about how hillslopes respond to tephra loads. Here, we report a pulsed and distinctly delayed increase in landslide activity following the eruptions of the Chaiten (2008) and Puyehue-Cordon Caulle (2011) volcanoes in southern Chile. Remote-sensing data reveal that land-slides clustered in densely forested hillslopes mostly two to six years after being covered by tephra. This lagged instability is consistent with a gradual loss of shear strength of decaying tree roots in areas of high tephra loads. Surrounding areas with comparable topography, forest cover, rainfall and lithology maintained landslide rates roughly ten times lower. The landslides eroded the landscape by up to 4.8 mm on average within 30 km of both volcanoes, mobilizing up to 1.6 MtC at rates of about 265 tC km(-2) yr(-1). We suggest that these yields may reinforce the elevated river loads of sediment and organic carbon in the decade after the eruptions. We recommend that studies of post-eruptive mass fluxes and hazards include lagged landslide responses of tephra-covered forested hillslopes, to avoid substantial underestimates.}, language = {en} } @article{MohrKorupUlloaetal.2017, author = {Mohr, Christian Heinrich and Korup, Oliver and Ulloa, Hector and Iroume, Andres}, title = {Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords}, series = {Global biogeochemical cycles}, volume = {31}, journal = {Global biogeochemical cycles}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0886-6236}, doi = {10.1002/2017GB005647}, pages = {1626 -- 1638}, year = {2017}, abstract = {Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaiten volcano in south-central Chile, where pyroclastic sediments covered >12km(2) of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered similar to 66,500+14,600/-14,500tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits (similar to 79,900+21,100/-16,900tC) or stored in active river channels (5,900-10,600tC). We estimate that bank erosion mobilized similar to 132,300(+21,700)/(-30,600)tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5mmyr(-1) since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources. Plain Language Summary Fjords and old-growth forests are important sinks of organic carbon. However, the role of volcanic eruptions in flushing organic carbon in fjord landscapes remains unexplored. Here we estimated how much forest vegetation and soils were lost to fjords following the 2008 eruption ofunknownChaiten volcano in south-central Chile. Pyroclastic sediments obliterated near-pristine temperateunknownrainforest, and the subsequent reworking of these sediments delivered in less than a decade similar to 66,000 tC of large wood to the mountain rivers, draining into the nearby Patagonian fjords. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits or stored in active riverunknownchannels. We estimate that similar to 130,000 tC of organic carbon-rich soil was lost to erosion, thus adding to the carbon loads. While much of the wood enters the long-shore drift in the fjord heads, the finerunknownfraction from eroded forest soils is likely to be buried in the fjords at rates that exceed regional estimates by an order of magnitude. We anticipate that these eruption-driven fluxes will remain elevated forunknownthe coming years and that Patagonian temperate rainforests episodically switch from carbon sinks to hitherto undocumented carbon sources if disturbed by explosive volcanic eruptions.}, language = {en} } @article{MohrMangaWangetal.2017, author = {Mohr, Christian Heinrich and Manga, Michael and Wang, Chi-Yuen and Korup, Oliver}, title = {Regional changes in streamflow after a megathrust earthquake}, series = {Earth \& planetary science letters}, volume = {458}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.11.013}, pages = {418 -- 428}, year = {2017}, abstract = {Moderate to large earthquakes can increase the amount of water feeding stream flows, mobilizing excess water from deep groundwater, shallow groundwater, or the vadose zone. Here we examine the regional pattern of streamflow response to the Maule M8.8 earthquake across Chile's diverse topographic and hydro-climatic gradients. We combine streamflow analyses with groundwater flow modeling and a random forest classifier, and find that, after the earthquake, at least 85 streams had a change in flow. Discharge mostly increased () shortly after the earthquake, liberating an excess water volume of >1.1 km3, which is the largest ever reported following an earthquake. Several catchments had increased discharge of >50 mm, locally exceeding seasonal streamflow discharge under undisturbed conditions. Our modeling results favor enhanced vertical permeability induced by dynamic strain as the most probable process explaining the observed changes at the regional scale. Supporting this interpretation, our random forest classification identifies peak ground velocity and elevation extremes as most important for predicting streamflow response. Given the mean recurrence interval of ∼25 yr for >M8.0 earthquakes along the Peru-Chile Trench, our observations highlight the role of earthquakes in the regional water cycle, especially in arid environments.}, language = {en} } @article{MohrCoppusIroumeetal.2013, author = {Mohr, Christian Heinrich and Coppus, Ruben and Iroume, Andres and Huber, Anton and Bronstert, Axel}, title = {Runoff generation and soil erosion processes after clear cutting}, series = {Journal of geophysical research : Earth surface}, volume = {118}, journal = {Journal of geophysical research : Earth surface}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/jgrf.20047}, pages = {814 -- 831}, year = {2013}, abstract = {Timber harvesting by clear cutting is known to impose environmental impacts, including severe disturbance of the soil hydraulic properties which intensify the frequency and magnitude of surface runoff and soil erosion. However, it remains unanswered if harvest areas act as sources or sinks for runoff and soil erosion and whether such behavior operates in a steady state or evolves through time. For this purpose, 92 small-scale rainfall simulations of different intensities were carried out under pine plantation conditions and on two clear-cut harvest areas of different age. Nonparametrical Random Forest statistical models were set up to quantify the impact of environmental variables on the hydrological and erosion response. Regardless of the applied rainfall intensity, runoff always initiated first and yielded most under plantation cover. Counter to expectations, infiltration rates increased after logging activities. Once a threshold rainfall intensity of 20mm/h was exceeded, the younger harvest area started to act as a source for both runoff and erosion after connectivity was established, whereas it remained a sink under lower applied rainfall intensities. The results suggest that the impact of microtopography on surface runoff connectivity and water-repellent properties of the topsoil act as first-order controls for the hydrological and erosion processes in such environments. Fast rainfall-runoff response, sediment-discharge-hystereses, and enhanced postlogging groundwater recharge at catchment scale support our interpretation. At the end, we show the need to account for nonstationary hydrological and erosional behavior of harvest areas, a fact previously unappreciated in predictive models.}, language = {en} } @article{MohrZimmermannKorupetal.2014, author = {Mohr, Christian Heinrich and Zimmermann, Andreas and Korup, Oliver and Iroume, A. and Francke, Till and Bronstert, Axel}, title = {Seasonal logging, process response, and geomorphic work}, series = {Earth surface dynamics}, volume = {2}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-2-117-2014}, pages = {117 -- 125}, year = {2014}, abstract = {Deforestation is a prominent anthropogenic cause of erosive overland flow and slope instability, boosting rates of soil erosion and concomitant sediment flux. Conventional methods of gauging or estimating post-logging sediment flux often focus on annual timescales but overlook potentially important process response on shorter intervals immediately following timber harvest. We resolve such dynamics with non-parametric quantile regression forests (QRF) based on high-frequency (3 min) discharge measurements and sediment concentration data sampled every 30-60 min in similar-sized (similar to 0.1 km(2)) forested Chilean catchments that were logged during either the rainy or the dry season. The method of QRF builds on the random forest algorithm, and combines quantile regression with repeated random sub-sampling of both cases and predictors. The algorithm belongs to the family of decision-tree classifiers, which allow quantifying relevant predictors in high-dimensional parameter space. We find that, where no logging occurred, similar to 80\% of the total sediment load was transported during extremely variable runoff events during only 5\% of the monitoring period. In particular, dry-season logging dampened the relative role of these rare, extreme sediment-transport events by increasing load efficiency during more efficient moderate events. We show that QRFs outperform traditional sediment rating curves (SRCs) in terms of accurately simulating short-term dynamics of sediment flux, and conclude that QRF may reliably support forest management recommendations by providing robust simulations of post-logging response of water and sediment fluxes at high temporal resolution.}, language = {en} } @article{MohrMangaWangetal.2015, author = {Mohr, Christian Heinrich and Manga, Michael and Wang, Chi-yuen and Kirchner, James W. and Bronstert, Axel}, title = {Shaking water out of soil}, series = {Geology}, volume = {43}, journal = {Geology}, number = {3}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G36261.1}, pages = {207 -- 210}, year = {2015}, abstract = {Moderate to large earthquakes can increase the amount of water flowing in streams. Previous interpretations and models assume that the extra water originates in the saturated zone. Here we show that earthquakes may also release water from the unsaturated zone when the seismic energy is sufficient to overcome the threshold of soil water retention. Soil water may then be released into aquifers, increasing streamflow. After the M8.8 Maule, Chile, earthquake, the discharge in some headwater catchments of the Chilean coastal range increased, and the amount of extra water in the discharge was similar to the total amount of water available for release from the unsaturated zone. Assuming rapid recharge of this water to the water table, a groundwater flow model that accounts for evapotranspiration and water released from soils can reproduce the increase in discharge as well as the enhanced diurnal discharge variations observed after the earthquake. Thus the unsaturated zone may play a previously unappreciated, and potentially significant, role in shallow hydrological responses to earthquakes.}, language = {en} } @article{UlloaIroumePiccoetal.2016, author = {Ulloa, H. and Iroume, A. and Picco, L. and Mohr, Christian Heinrich and Mazzorana, B. and Lenzi, Mario Aristide and Mao, L.}, title = {Spatial analysis of the impacts of the Chaiten volcano eruption (Chile) in three fluvial systems}, series = {Journal of South American earth sciences}, volume = {69}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2016.04.008}, pages = {213 -- 225}, year = {2016}, abstract = {The eruption of the Chaiten volcano in May 2008 generated morphological and ecological disturbances in adjacent river basins, and the magnitude of these disturbances depended on the type of dominant volcanic process affecting each of them. The aim of this study is to analyse the morphological changes in different periods in river segments of the Blanco, El Amarillo and Rayas river basins located near the Chaiten volcano. These basins suffered disturbances of different intensity and spatial distribution caused by tephra fall, dome collapses and pyroclastic density currents that damaged hillslope forests, widened channels and destroyed island and floodplain vegetation. Changes continued to occur in the fluvial systems in the years following the eruption, as a consequence of the geomorphic processes indirectly induced by the eruption. Channel changes were analyzed by comparing remote images of pre and post eruption conditions. Two periods were considered: the first from 2008 to 2009-2010 associated with the explosive and effusive phases of the eruption and the second that correspond to the post-eruption stage from 2009-2010 to 2013. Following the first phases channel segments widened 91\% (38 m/yr), 6\% (7 m/yr) and 7\% (22 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively, compared to pre-eruption condition. In the second period, channel segments additionally widened 42\% (8 m/yr), 2\% (2 m/yr) and 5\% (4 m/yr) for Blanco, Rayas and El Amarillo Rivers, respectively. In the Blanco River 62 and 82\% of the islands disappeared in the first and second period, respectively, which is 6-8 times higher than in the El Amarillo approximately twice the Rayas. Sinuosity increased after the eruption only in the Blanco River but the three study channels showed a high braiding intensity mainly during the first post-eruption period. The major disturbances occurred during the eruptive and effusive phases of Chaiten volcano, and the intensity of these disturbances reflects the magnitude of the dominant volcanic processes affecting each basin. Inputs of sediment from dome collapses and pyroclastic density currents and not ash fall seem to explain morphologic channel change magnitudes in the study segments. The resulting knowledge can facilitate land use planning and design of river restoration projects in areas affected by volcanic eruptions disturbances. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{MohrMontgomeryHuberetal.2012, author = {Mohr, Christian Heinrich and Montgomery, David R. and Huber, Anton and Bronstert, Axel and Iroume, Andres}, title = {Streamflow response in small upland catchments in the Chilean coastal range to the M-W 8.8 Maule earthquake on 27 February 2010}, series = {Journal of geophysical research : Earth surface}, volume = {117}, journal = {Journal of geophysical research : Earth surface}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0148-0227}, doi = {10.1029/2011JF002138}, pages = {16}, year = {2012}, abstract = {Hydrological response to earthquakes has long been observed, yet the mechanisms responsible still remain unclear and likely vary in space and time. This study explores the base flow response in small upland catchments of the Coastal Range of south-central Chile after the M-W 8.8 Maule earthquake of 27 February 2010. An initial decline in streamflow followed by an increase of up to 400\% of the discharge measured immediately before the earthquake occurred, and diurnal streamflow oscillations intensified after the earthquake. Neither response time, nor time to maximum streamflow discharge showed any relationship with catchment topography or size, suggesting non-uniform release of water across the catchments. The fast response, unaffected stream water temperatures and a simple diffusion model point to the sandy saprolite as the source of the excess water. Base flow recession analysis reveals no evidence for substantial enhancement of lateral hydraulic conductivity in the saprolite after the earthquake. Seismic energy density reached similar to 170 J/m(3) for the main shock and similar to 0.9 J/m(3) for the aftershock, exceeding the threshold for liquefaction by undrained consolidation only during the main shock. Although increased hydraulic gradient due to ground acceleration-triggered, undrained consolidation is consistent with empirical magnitude-distance relationships for liquefaction, the lack of independent evidence for liquefaction means that enhanced vertical permeability (probably in combination with co-seismic near-surface dilatancy) cannot be excluded as a potential mechanism. Undrained consolidation may have released additional water from the saturated saprolite into the overlying soil, temporarily reducing water transfer to the creeks but enlarging the cross-section of the saturated zone, which in turn enhanced streamflow after establishment of a new hydraulic equilibrium. The enlarged saturated zone facilitated water uptake by roots and intensified evapotranspiration.}, language = {en} }