@article{ObergGladhAnniyevetal.2015, author = {Oberg, H. and Gladh, J{\"o}rgen and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and F{\"o}hlisch, Alexander and Katayama, T. and Kaya, Sarp and LaRue, Jerry and Mogelhoj, Andreas and Nordlund, Dennis and Ogasawara, Hirohito and Schlotter, William F. and Sellberg, Jonas A. and Sorgenfrei, Florian and Turner, Joshua J. and Wolf, Martin and Wurth, W. and Ostrom, Henrik and Nilsson, Anders and Norskov, Jens K. and Pettersson, Lars G. M.}, title = {Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state}, series = {Surface science}, volume = {640}, journal = {Surface science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0039-6028}, doi = {10.1016/j.susc.2015.03.011}, pages = {80 -- 88}, year = {2015}, abstract = {We present density functional theory modeling of time-resolved optical pump/X-ray spectroscopic probe data of CO desorption from Ru(0001). The BEEF van der Waals functional predicts a weakly bound state as a precursor to desorption. The optical pump leads to a near-instantaneous (<100 fs) increase of the electronic temperature to nearly 7000 K. The temperature evolution and energy transfer between electrons, substrate phonons and adsorbate is described by the two-temperature model and found to equilibrate on a timescale of a few picoseconds to an elevated local temperature of similar to 2000K. Estimating the free energy based on the computed potential of mean force along the desorption path, we find an entropic barrier to desorption (and by time-reversal also to adsorption). This entropic barrier separates the chemisorbed and precursor states, and becomes significant at the elevated temperature of the experiment (similar to 1.4 eV at 2000 K). Experimental pump-probe X-ray absorption/X-ray emission spectroscopy indicates population of a precursor state to desorption upon laser-excitation of the system (Dell'Angela et al., 2013). Computing spectra along the desorption path confirms the picture of a weakly bound transient state arising from ultrafast heating of the metal substrate. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{OstromObergXinetal.2015, author = {Ostrom, H. and Oberg, H. and Xin, H. and Larue, J. and Beye, Martin and Gladh, J. and Ng, M. L. and Sellberg, J. A. and Kaya, S. and Mercurio, G. and Nordlund, D. and Hantschmann, Markus and Hieke, F. and Kuehn, D. and Schlotter, W. F. and Dakovski, G. L. and Turner, J. J. and Minitti, M. P. and Mitra, A. and Moeller, S. P. and F{\"o}hlisch, Alexander and Wolf, M. and Wurth, W. and Persson, Mats and Norskov, J. K. and Abild-Pedersen, Frank and Ogasawara, Hirohito and Pettersson, Lars G. M. and Nilsson, A.}, title = {Probing the transition state region in catalytic CO oxidation on Ru}, series = {Science}, volume = {347}, journal = {Science}, number = {6225}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1261747}, pages = {978 -- 982}, year = {2015}, abstract = {Femtosecond x-ray laser pulses are used to probe the carbon monoxide (CO) oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and oxygen (O) on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the OK-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC-O bond lengths close to the transition state (TS). After 1 ps, 10\% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.}, language = {en} } @article{Dell'AngelaAnniyevBeyeetal.2013, author = {Dell'Angela, M. and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and F{\"o}hlisch, Alexander and Gladh, J. and Katayama, T. and Kaya, S. and Krupin, O. and LaRue, J. and Mogelhoj, A. and Nordlund, D. and Norskov, J. K. and Oberg, H. and Ogasawara, H. and Ostrom, H. and Pettersson, Lars G. M. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Florian and Turner, J. J. and Wolf, M. and Wurth, W. and Nilsson, A.}, title = {Real-time observation of surface bond breaking with an X-ray Laser}, series = {Science}, volume = {339}, journal = {Science}, number = {6125}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1231711}, pages = {1302 -- 1305}, year = {2013}, abstract = {We used the Linac Coherent Light Source free-electron x-ray laser to probe the electronic structure of CO molecules as their chemisorption state on Ru(0001) changes upon exciting the substrate by using a femtosecond optical laser pulse. We observed electronic structure changes that are consistent with a weakening of the CO interaction with the substrate but without notable desorption. A large fraction of the molecules (30\%) was trapped in a transient precursor state that would precede desorption. We calculated the free energy of the molecule as a function of the desorption reaction coordinate using density functional theory, including van der Waals interactions. Two distinct adsorption wells-chemisorbed and precursor state separated by an entropy barrier-explain the anomalously high prefactors often observed in desorption of molecules from metals.}, language = {en} } @article{deJongKukrejaTrabantetal.2013, author = {de Jong, S. and Kukreja, R. and Trabant, C. and Pontius, N. and Chang, C. F. and Kachel, T. and Beye, Martin and Sorgenfrei, Florian and Back, C. H. and Braeuer, B. and Schlotter, W. F. and Turner, J. J. and Krupin, O. and Doehler, M. and Zhu, D. and Hossain, M. A. and Scherz, A. O. and Fausti, D. and Novelli, F. and Esposito, M. and Lee, W. S. and Chuang, Y. D. and Lu, D. H. and Moore, R. G. and Yi, M. and Trigo, M. and Kirchmann, P. and Pathey, L. and Golden, M. S. and Buchholz, Marcel and Metcalf, P. and Parmigiani, F. and Wurth, W. and F{\"o}hlisch, Alexander and Schuessler-Langeheine, Christian and Duerr, H. A.}, title = {Speed limit of the insulator-metal transition in magnetite}, series = {Nature materials}, volume = {12}, journal = {Nature materials}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3718}, pages = {882 -- 886}, year = {2013}, abstract = {As the oldest known magnetic material, magnetite (Fe3O4) has fascinated mankind for millennia. As the first oxide in which a relationship between electrical conductivity and fluctuating/localized electronic order was shown(1), magnetite represents a model system for understanding correlated oxides in general. Nevertheless, the exact mechanism of the insulator-metal, or Verwey, transition has long remained inaccessible(2-8). Recently, three- Fe- site lattice distortions called trimeronswere identified as the characteristic building blocks of the low-temperature insulating electronically ordered phase(9). Here we investigate the Verwey transition with pump- probe X- ray diffraction and optical reflectivity techniques, and show how trimerons become mobile across the insulator-metal transition. We find this to be a two- step process. After an initial 300 fs destruction of individual trimerons, phase separation occurs on a 1.5 +/- 0.2 ps timescale to yield residual insulating and metallic regions. This work establishes the speed limit for switching in future oxide electronics(10).}, language = {en} } @article{GorobtsovMercurioBrenneretal.2017, author = {Gorobtsov, O. Yu. and Mercurio, G. and Brenner, G. and Lorenz, Ulf and Gerasimova, N. and Kurta, R. P. and Hieke, F. and Skopintsev, P. and Zaluzhnyy, I. and Lazarev, S. and Dzhigaev, D. and Rose, M. and Singer, A. and Wurth, W. and Vartanyants, I. A.}, title = {Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {95}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.95.023843}, pages = {16}, year = {2017}, abstract = {We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission free-electron laser (FEL) FLASH by means of Hanbury Brown and Twiss interferometry. The experiments were performed at FEL wavelengths of 5.5, 13.4, and 20.8 nm. We determined the second-order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50\%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain the complicated behavior of the second-order intensity correlation function we developed an advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in one of the experiments external positional jitter was about 25\% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of FEL radiation.}, language = {en} } @article{BeyeSchreckSorgenfreietal.2013, author = {Beye, Martin and Schreck, S. and Sorgenfrei, Florian and Trabant, C. and Pontius, N. and Sch{\"u}ßler-Langeheine, C. and Wurth, W. and F{\"o}hlisch, Alexander}, title = {Stimulated X-ray emission for materials science}, series = {Nature : the international weekly journal of science}, volume = {501}, journal = {Nature : the international weekly journal of science}, number = {7466}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature12449}, pages = {191 -- +}, year = {2013}, abstract = {Resonant inelastic X-ray scattering and X-ray emission spectroscopy can be used to probe the energy and dispersion of the elementary low-energy excitations that govern functionality in matter: vibronic, charge, spin and orbital excitations(1-7). A key drawback of resonant inelastic X-ray scattering has been the need for high photon densities to compensate for fluorescence yields of less than a per cent for soft X-rays(8). Sample damage from the dominant non-radiative decays thus limits the materials to which such techniques can be applied and the spectral resolution that can be obtained. A means of improving the yield is therefore highly desirable. Here we demonstrate stimulated X-ray emission for crystalline silicon at photon densities that are easily achievable with free-electron lasers(9). The stimulated radiative decay of core excited species at the expense of non-radiative processes reduces sample damage and permits narrow-bandwidth detection in the directed beam of stimulated radiation. We deduce how stimulated X-ray emission can be enhanced by several orders of magnitude to provide, with high yield and reduced sample damage, a superior probe for low-energy excitations and their dispersion in matter. This is the first step to bringing nonlinear X-ray physics in the condensed phase from theory(10-16) to application.}, language = {en} } @article{PontiusKachelSchuesslerLangeheineetal.2011, author = {Pontius, N. and Kachel, T. and Sch{\"u}ssler-Langeheine, C. and Schlotter, W. F. and Beye, Martin and Sorgenfrei, Florian and Chang, C. F. and F{\"o}hlisch, Alexander and Wurth, W. and Metcalf, P. and Leonov, I. and Yaresko, A. and Stojanovic, N. and Berglund, Martin and Guerassimova, N. and Duesterer, S. and Redlin, H. and Duerr, H. A.}, title = {Time-resolved resonant soft x-ray diffraction with free-electron lasers femtosecond dynamics across the Verwey transition in magnetite}, series = {Applied physics letters}, volume = {98}, journal = {Applied physics letters}, number = {18}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.3584855}, pages = {3}, year = {2011}, abstract = {Resonant soft x-ray diffraction (RSXD) with femtosecond (fs) time resolution is a powerful tool for disentangling the interplay between different degrees of freedom in strongly correlated electron materials. It allows addressing the coupling of particular degrees of freedom upon an external selective perturbation, e. g., by an optical or infrared laser pulse. Here, we report a time-resolved RSXD experiment from the prototypical correlated electron material magnetite using soft x-ray pulses from the free-electron laser FLASH in Hamburg. We observe ultrafast melting of the charge-orbital order leading to the formation of a transient phase, which has not been observed in equilibrium.}, language = {en} } @article{KatayamaAnniyevBeyeetal.2013, author = {Katayama, T. and Anniyev, Toyli and Beye, Martin and Coffee, Ryan and Dell'Angela, M. and F{\"o}hlisch, Alexander and Gladh, J. and Kaya, S. and Krupin, O. and Nilsson, A. and Nordlund, D. and Schlotter, W. F. and Sellberg, J. A. and Sorgenfrei, Florian and Turner, J. J. and Wurth, W. and {\"O}str{\"o}m, H. and Ogasawara, H.}, title = {Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser}, series = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, volume = {187}, journal = {Journal of electron spectroscopy and related phenomena : the international journal on theoretical and experimental aspects of electron spectroscopy}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0368-2048}, doi = {10.1016/j.elspec.2013.03.006}, pages = {9 -- 14}, year = {2013}, abstract = {We report on an experimental system designed to probe chemical reactions on solid surfaces on a sub-picosecond timescale using soft X-ray emission spectroscopy at the Linac Coherent Light Source (LCLS) free electron laser (FEL) at the SLAC National Accelerator Laboratory. We analyzed the O 1s X-ray emission spectra recorded from atomic oxygen adsorbed on a Ru(0001) surface at a synchrotron beamline (SSRL, BL13-2) and an FEL beamline (LCLS, SXR). We have demonstrated conditions that provide negligible amount of FEL induced damage of the sample. In addition we show that the setup is capable of tracking the temporal evolution of electronic structure during a surface reaction of submonolayer quantities of CO molecules desorbing from the surface.}, language = {en} }