@article{PikovskijPopovychMaistrenko2001, author = {Pikovskij, Arkadij and Popovych, Orest and Maistrenko, Yu}, title = {Resolving Clusters in Chaotic Ensembles of Globally Coupled Identical Oscillators}, year = {2001}, abstract = {Clustering in ensembles of globally coupled identical chaotic oscillators is reconsidered using a twofold approach. Stability of clusters towards "emanation" of the elements is described with the evaporation Lyapunov exponents. It appears that direct numerical simulations of ensembles often lead to spurious clusters that have positive evaporation exponents, due to a numerical trap. We propose a numerical method that surmounts the spurious clustering. We also demonstrate that clustering can be very sensitive to the number of elements in the ensemble.}, language = {en} } @article{PopovychMaistrenkoMosekildeetal.2000, author = {Popovych, Orest and Maistrenko, Yu and Mosekilde, Erik and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {Transcritical loss of synchronization in coupled chaotic systems}, year = {2000}, language = {en} } @article{PopovychMaistrenkoMosekildeetal.2001, author = {Popovych, Orest and Maistrenko, Yu and Mosekilde, Erik and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {Transcritical riddling in a system of coupled maps}, year = {2001}, abstract = {The transition from fully synchronized behavior to two-cluster dynamics is investigated for a system of N globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system. While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the transverse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifurcation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be replaced by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabilization of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way, the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied by the destruction of a thin invariant region around the symmetrical chaotic state.}, language = {en} }