@article{KonradSchmolkeBabistHandyetal.2006, author = {Konrad-Schmolke, Matthias and Babist, Jochen and Handy, Mark R. and O'brien, Patrick J.}, title = {The physico-chemical properties of a subducted slab from garnet zonation patterns (Sesia Zone, Western Alps)}, series = {Journal of petrology}, volume = {47}, journal = {Journal of petrology}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3530}, doi = {10.1093/petrology/egl039}, pages = {2123 -- 2148}, year = {2006}, abstract = {Garnets in continentally derived high-pressure (HP) rocks of the Sesia Zone (Western Alps) exhibit three different chemical zonation patterns, depending on sample locality. Comparison of observed garnet zonation patterns with thermodynamically modelled patterns shows that the different patterns are caused by differences in the water content of the subducted protoliths during prograde metamorphism. Zonation patterns of garnets in water-saturated host rocks show typical prograde chemical zonations with steadily increasing pyrope content and increasing XMg, together with bell-shaped spessartine patterns. In contrast, garnets in water-undersaturated rocks have more complex zonation patterns with a characteristic decrease in pyrope and XMg between core and inner rim. In some cases, garnets show an abrupt compositional change in core-to-rim profiles, possibly due to water-undersaturation prior to HP metamorphism. Garnets from both water-saturated and water-undersaturated rocks show signs of intervening growth interruptions and core resorption. This growth interruption results from bulk-rock depletion caused by fractional garnet crystallization. The water content during burial influences significantly the physical properties of the subducted rocks. Due to enhanced garnet crystallization, water-undersaturated rocks, i.e. those lacking a free fluid phase, become denser than their water-saturated equivalents, facilitating the subduction of continental material. Although water-bearing phases such as phengite and epidote are stable up to eclogite-facies conditions in these rocks, dehydration reactions during subduction are lacking in water-undersaturated rocks up to the transition to the eclogite facies, due to the thermodynamic stability of such hydrous phases at high P-T conditions. Our calculations show that garnet zonation patterns strongly depend on the mineral parageneses stable during garnet growth and that certain co-genetic mineral assemblages cause distinct garnet zonation patterns. This observation enables interpretation of complex garnet growth zonation patterns in terms of garnet-forming reactions and water content during HP metamorphism, as well determination of detailed P-T paths.}, language = {en} } @article{KonradSchmolkeHandyBabistetal.2005, author = {Konrad-Schmolke, Matthias and Handy, Mark R. and Babist, Jochen and O'Brien, Patrick J.}, title = {Thermodynamic modelling of diffusion-controlled garnet growth}, issn = {0010-7999}, year = {2005}, abstract = {Numerical thermodynamic modelling of mineral composition and modes for specified pressure-temperature paths reveals the strong influence of fractional garnet crystallisation, as well as water fractionation, on garnet growth histories in high pressure rocks. Disequilibrium element incorporation in garnet due to the development of chemical inhomogeneities around porphyroblasts leads to pronounced episodic growth and may even cause growth interruptions. Discontinuous growth, together with pressure- and temperature-dependent changes in garnet chemistry, cause zonation patterns that are indicative of different degrees of disequilibrium element incorporation. Chemical inhomogeneities in the matrix surrounding garnet porphyroblasts strongly affect garnet growth and lead to compositional discontinuities and steep compositional gradients in the garnet zonation pattern. Further, intergranular diffusion-controlled calcium incorporation can lead to a characteristic rise in grossular and spessartine contents at lower metamorphic conditions. The observation that garnet zonation patterns diagnostic of large and small fractionation effects coexist within the same sample suggests that garnet growth is often controlled by small-scale variations in the bulk rock chemistry. Therefore, the spatial distribution of garnet grains and their zonation patterns, together with numerical growth models of garnet zonation patterns, yield information about the processes limiting garnet growth. These processes include intercrystalline element transport and dissolution of pre-existing grains. Discontinuities in garnet growth induced by limited element supply can mask traces of the thermobarometric history of the rock. Therefore, thermodynamic modelling that considers fractional disequilibrium crystallisation is required to interpret compositional garnet zonation in terms of a quantitative pressure and temperature path of the host rock}, language = {en} }