@misc{ColomboWackerParrishetal.2017, author = {Colombo, Stefanie M. and Wacker, Alexander and Parrish, Christopher C. and Kainz, Martin J. and Arts, Michael T.}, title = {A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems}, series = {Environmental reviews = Dossiers environnement}, volume = {25}, journal = {Environmental reviews = Dossiers environnement}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1208-6053}, doi = {10.1139/er-2016-0062}, pages = {163 -- 174}, year = {2017}, abstract = {Polyunsaturated fatty acids (PUFA), especially long-chain (i.e., >= 20 carbons) polyunsaturated fatty acids (LC-PUFA), are fundamental to the health and survival of marine and terrestrial organisms. Therefore, it is imperative that we gain a better understanding of their origin, abundance, and transfer between and within these ecosystems. We evaluated the natural variation in PUFA distribution and abundance that exists between and within these ecosystems by amassing and analyzing, using multivariate and analysis of variance (ANOVA) methods, >3000 fatty acid (FA) profiles from marine and terrestrial organisms. There was a clear dichotomy in LC-PUFA abundance between organisms in marine and terrestrial ecosystems, mainly driven by the C-18 PUFA in terrestrial organisms and omega-3 (n-3) LC-PUFA in marine organisms. The PUFA content of an organism depended on both its biome (marine vs terrestrial) and taxonomic group. Within the marine biome, the PUFA content varied among taxonomic groups. PUFA content of marine organisms was dependent on both geographic zone (i.e., latitude, and thus broadly related to temperature) and trophic level (a function of diet). The contents of n-3 LC-PUFA were higher in polar and temperate marine organisms than those from the tropics. Therefore, we conclude that, on a per capita basis, high latitude marine organisms provide a disproportionately large global share of these essential nutrients to consumers, including terrestrial predators. Our analysis also hints at how climate change, and other anthropogenic stressors, might act to negatively impact the global distribution and abundance of n-3 LC-PUFA within marine ecosystems and on the terrestrial consumers that depend on these subsidies.}, language = {en} } @article{LukasWacker2014, author = {Lukas, Marcus and Wacker, Alexander}, title = {Acclimation to dietary shifts impacts the carbon budgets of Daphnia magna}, series = {Journal of plankton research}, volume = {36}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbu018}, pages = {848 -- 858}, year = {2014}, abstract = {Daphnia responds to low availability of carbon (food quantity) or limiting concentrations of nutrients relative to carbon (C) in excess (food quality) by respectively saving or discharging C via different pathways. We investigated which kind of food limitation leads to a faster regulation in Daphnia C budgets, and whether the pre-assimilative C pathways, ingestion and faeces egestion and the post-assimilative C pathways, excretion and respiration, are regulated concurrently. Daphnia magna were exposed to dietary shifts in different food quantities or qualities; food quality was varied in terms of the essential component, cholesterol. After acclimation to the new diet ranging from 0 to 96 h, C budgets were measured by a radiotracer technique. Dietary shifts in quantity and quality caused Daphnia to quickly adjust their C budgets within 6 h, but different C pathways were affected. A shift to low food quantity reduced Daphnia respiration indicating C retention. In contrast, sudden low quality food caused increased faeces egestion to discharge excess C. Furthermore, we observed a delayed increase in excretion but no change in respiration within the time frame studied. Such time-shifted responses appear to be an appropriate means to keep the costs of physiological adjustments relatively low, which in turn would benefit Daphnia performance.}, language = {en} } @article{Wacker2007, author = {Wacker, Alexander}, title = {Allocation of essential lipids in Daphnia magna during exposure to poor food quality}, doi = {10.1111/j.1365-2435.2007.01274.x}, year = {2007}, language = {en} } @article{WackerMartinCreuzburg2012, author = {Wacker, Alexander and Martin-Creuzburg, Dominik}, title = {Biochemical nutrient requirements of the rotifer Brachionus calyciflorus co-limitation by sterols and amino acids}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {26}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0269-8463}, doi = {10.1111/j.1365-2435.2012.02047.x}, pages = {1135 -- 1143}, year = {2012}, abstract = {It has been proposed that growth and reproduction of animals is frequently limited by multiple nutrients simultaneously. To improve our understanding of the consequences of multiple nutrient limitations (i.e. co-limitation) for the performance of animals, we conducted standardized population growth experiments using an important aquatic consumer, the rotifer Brachionus calyciflorus. We compared nutrient profiles (sterols, fatty acids and amino acids) of rotifers and their diets to reveal consumerdiet imbalances and thus potentially limiting nutrients. In concomitant growth experiments, we directly supplemented potentially limiting substances (sterols, fatty acids, amino acids) to a nutrient-deficient diet, the cyanobacterium Synechococcus elongatus, and recorded population growth rates. The results from the supplementation experiments corroborated the nutrient limitations predicted by assessing consumerdiet imbalances, but provided more detailed information on co-limiting nutrients. While the fatty acid deficiency of the cyanobacterium appeared to be of minor importance, the addition of both cholesterol and certain amino acids (leucine and isoleucine) improved population growth rates of rotifers, indicating a simultaneous limitation by sterols and amino acids. Our results add to growing evidence that consumers frequently face multiple nutrient limitations and suggest that the concept of co-limitation has to be considered in studies assessing nutrient-limited growth responses of consumers.}, language = {en} } @misc{SperfeldRaubenheimerWacker2016, author = {Sperfeld, Erik and Raubenheimer, David and Wacker, Alexander}, title = {Bridging factorial and gradient concepts of resource co-limitation: towards a general framework applied to consumers}, series = {Ecology letters}, volume = {19}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12554}, pages = {201 -- 215}, year = {2016}, abstract = {Organism growth can be limited either by a single resource or by multiple resources simultaneously (co-limitation). Efforts to characterise co-limitation have generated two influential approaches. One approach uses limitation scenarios of factorial growth assays to distinguish specific types of co-limitation; the other uses growth responses spanned over a continuous, multi-dimensional resource space to characterise different types of response surfaces. Both approaches have been useful in investigating particular aspects of co-limitation, but a synthesis is needed to stimulate development of this recent research area. We address this gap by integrating the two approaches, thereby presenting a more general framework of co-limitation. We found that various factorial (co-)limitation scenarios can emerge in different response surface types based on continuous availabilities of essential or substitutable resources. We tested our conceptual co-limitation framework on data sets of published and unpublished studies examining the limitation of two herbivorous consumers in a two-dimensional resource space. The experimental data corroborate the predictions, suggesting a general applicability of our co-limitation framework to generalist consumers and potentially also to other organisms. The presented framework might give insight into mechanisms that underlie co-limitation responses and thus can be a seminal starting point for evaluating co-limitation patterns in experiments and nature.}, language = {en} } @article{WackerWeithoff2009, author = {Wacker, Alexander and Weithoff, Guntram}, title = {Carbon assimilation mode in mixotrophs and the fatty acid composition of their rotifer consumers}, issn = {0046-5070}, doi = {10.1111/j.1365-2427.2009.02251.x}, year = {2009}, abstract = {P>1. We examined an important ecophysiological link between the mixotrophic flagellate Chlamydomonas acidophila and its consumers, the rotifers Elosa worallii, Cephalodella sp. and Brachionus sericus, by comparing their fatty acid profiles. 2. The mixotrophic flagellate was grown under either exclusively autotrophic conditions in the light, under exclusively heterotrophic conditions in the dark with an organic carbon source (glucose), or in the light plus the organic carbon sources (=mixotrophic). 3. Under heterotrophic growth conditions, C. acidophila strongly reduced its content of the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA, C18:3n-3) compared with auto- and mixotrophic growth conditions. Although PUFAs with more than 18 carbon atoms were not detected in C. acidophila, significant amounts of eicosatetraenoic (ETA, 20:4n-3) and eicosapentaenoic acid (EPA, 20:5n-3) were found in three rotifer consumers. 4. Species-specific differences in the fatty acid profiles with respect to ETA, EPA and the precursor ALA were found in the rotifers: Brachionus and Cephalodella fed on the heterotrophic diets synthesised less EPA. In Elosa, smaller amounts of ALA were detected but were converted efficiently to a constant content of EPA and to an exceptionally high content of ETA. 5. Since in nature the mode of carbon assimilation among mixotrophic organisms differs, and their fatty acid composition varies depending on their mode of carbon assimilation, the availability of ALA might be critical for their consumers. An insufficient dietary supply of this precursor for the synthesis of ETA and EPA can prevent consumers from regulating their content of ETA and EPA. Therefore, observed differences in values of the latter might underly species-specific differences in the competitive capability of consumers.}, language = {en} } @article{HartwichWackerWeithoff2010, author = {Hartwich, Melanie and Wacker, Alexander and Weithoff, Guntram}, title = {Changes in the competitive abilities of two rotifers feeding on mixotrophic flagellates}, issn = {0142-7873}, doi = {10.1093/plankt/fbq081}, year = {2010}, abstract = {The competitive abilities of two rotifer species (Elosa worallii, Cephalodella sp.) were influenced by the mode of carbon acquisition of the osmo-mixotrophic flagellate Chlamydomonas acidophila due to changes in cell biochemistry.}, language = {en} } @article{MartinCreuzburgSperfeldWacker2009, author = {Martin-Creuzburg, Dominik and Sperfeld, Erik and Wacker, Alexander}, title = {Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids}, issn = {0962-8452}, doi = {10.1098/rspb.2008.1540}, year = {2009}, abstract = {Empirical data providing evidence for a colimitation of an herbivore by two or more essential nutrients are scarce, particularly in regard to biochemical resources. Here, a graphical model is presented, which describes the growth of an herbivore in a system with two potentially limiting resources. To verify this model, life-history experiments were conducted with the herbivore Daphnia magna feeding on the picocyanobacterium Synechococcus elongatus, which was supplemented with increasing amounts of cholesterol either in the presence or the absence of saturating amounts of eicosapentaenoic acid (EPA). For comparison, D. magna was raised on diets containing different proportions of S. elongatus and the cholesterol- and EPA-rich eukaryotic alga Nannochloropsis limnetica. Somatic and population growth of D. magna on a sterol- and EPA-deficient diet was initially constrained by the absence of sterols. With increased sterol availability, a colimitation by EPA became apparent and when the sterol requirements were met, the growth- limiting factor was shifted from a limitation by sterols to a limitation by EPA. These data imply that herbivores are frequently limited by two or more essential nutrients simultaneously. Hence, the concept of colimitation has to be incorporated into models assessing nutrient-limited growth kinetics of herbivores to accurately predict demographic changes and population dynamics.}, language = {en} } @article{LukasWacker2014, author = {Lukas, Marcus and Wacker, Alexander}, title = {Constraints by oxygen and food quality on carbon pathway regulation: a co-limitation study with an aquatic key herbivore}, series = {Ecology : a publication of the Ecological Society of America}, volume = {95}, journal = {Ecology : a publication of the Ecological Society of America}, number = {11}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {3068 -- 3079}, year = {2014}, abstract = {In food webs, herbivores are often constrained by low food quality in terms of mineral and biochemical limitations, which in aquatic ecosystems can co-occur with limited oxygen conditions. As low food quality implies that carbon (C) is available in excess, and therefore a regulation to get rid of excess C is crucial for the performance of consumers, we examined the C pathways (ingestion, feces release, excretion, and respiration) of a planktonic key herbivore (Daphnia magna). We tested whether consumer C pathways increase due to mineral (phosphorus, P) or biochemical (cholesterol and fatty acid) limitations and how these regulations vary when in addition oxygen is low. Under such conditions, at least the capability of the upregulation of respiration may be restricted. Furthermore, we discussed the potential role of the oxygen-transporting protein hemoglobin (Hb) in the regulation of C budgets. Different food quality constraints led to certain C regulation patterns to increase the removal of excess dietary C: P-limited D. magna increased excretion and respiration, while cholesterol-limited Daphnia in addition upregulated the release of feces. In contrast, the regulative effort was low and only feces release increased when D. magna was limited by a long-chain polyunsaturated fatty acid (eicosapentaenoic acid, EPA). Co-limiting oxygen did not always impact the discharge of excess C. We found the food-quality-induced upregulation of respiration was still present at low oxygen. In contrast, higher excretion of excess C was diminished at low oxygen supply. Besides the effect that the Hb concentration increased under low oxygen, our results indicate a low food-quality-induced increase in the Hb content of the animals. Overall, C budgeting is phenotypically plastic towards different (co-) limiting scenarios. These trigger specific regulation responses that could be the result of evolutionary adaptations.}, language = {en} } @article{KoussoroplisWacker2016, author = {Koussoroplis, Apostolos-Manuel and Wacker, Alexander}, title = {Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits}, series = {Ecology letters}, volume = {19}, journal = {Ecology letters}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12546}, pages = {143 -- 152}, year = {2016}, abstract = {Understanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life-history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food-temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understanding ectotherm responses to climate-driven alterations of thermal mean and variance.}, language = {en} }