@article{YangHuDingetal.2018, author = {Yang, Guang and Hu, Rongting and Ding, Hong-ming and Kochovski, Zdravko and Mei, Shilin and Lu, Yan and Ma, Yu-qiang and Chen, Guosong and Jiang, Ming}, title = {CO2-switchable response of protein microtubules}, series = {Materials chemistry frontiers}, volume = {2}, journal = {Materials chemistry frontiers}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2052-1537}, doi = {10.1039/c8qm00245b}, pages = {1642 -- 1646}, year = {2018}, abstract = {Recently, we proposed a small molecular inducing ligand strategy to assemble proteins into highly-ordered structures via dual non-covalent interactions, i.e. carbohydrate-protein interaction and dimerization of Rhodamine B. Using this approach, artificial protein microtubules were successfully constructed. In this study, we find that these microtubules exhibit a perfect CO2 responsiveness; assembly and disassembly of these microtubules were nicely controlled by the alternative passage of CO2 and N-2. Upon the injection of CO2, a negative net-charged SBA turns into a neutral or positive net-charged SBA, which elongated, to some extent, the effective distance between SBA and Rhodamine B, resulting in the disassociation of the Rhodamine B dimer. Further experimental and simulation results reveal that the CO2-responsive mechanism differs from that of solubility change of the previously reported CO2-responsive synthetic materials.}, language = {en} } @article{PhamQuanMeietal.2022, author = {Pham, Duong Tung and Quan, Ting and Mei, Shilin and Lu, Yan}, title = {Colloidal metal sulfide nanoparticles for high performance electrochemical energy storage systems}, series = {Current opinion in green and sustainable chemistry}, volume = {34}, journal = {Current opinion in green and sustainable chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2452-2236}, doi = {10.1016/j.cogsc.2022.100596}, pages = {11}, year = {2022}, abstract = {Transition metal sulfides have emerged as excellent replacement candidates of traditional insertion electrode materials based on their conversion or alloying mechanisms, facilitating high specific capacity and rate ability. However, parasitic reactions such as massive volume change during the discharge/ charge processes, intermediate polysulfide dissolution, and passivating solid electrolyte interface formation have led to poor cyclability, hindering their feasibility and applicability in energy storage systems. Colloidal metal sulfide nanoparticles, a special class that integrates the intrinsic chemical properties of metal sulfides and their specified structural features, have fairly enlarged their contribution due to the synergistic effect. This review highlights the latest synthetic approaches based on colloidal process. Their corresponding electrochemical outcomes will also be discussed, which are thoroughly updated along with their insight scientific standpoints.}, language = {en} } @article{JiaGaoMeietal.2018, author = {Jia, He and Gao, Haitao and Mei, Shilin and Kneer, Janosch and Lin, Xianzhong and Ran, Qidi and Wang, Fuxian and Palzer, Stefan and Lu, Yan}, title = {Cu2O@PNIPAM core-shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {6}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {27}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c8tc01995a}, pages = {7249 -- 7256}, year = {2018}, abstract = {There has been long-standing interest in developing metal oxide-based sensors with high sensitivity, selectivity, fast response and low material consumption. Here we report for the first time the utilization of Cu2O@PNIPAM core-shell microgels with a nanocube-shaped core structure for construction of novel CuO gas sensing layers. The hybrid microgels show significant improvement in colloidal stability as compared to native Cu2O nanocubes. Consequently, a homogeneous thin film of Cu2O@PNIPAM nanoparticles can be engineered in a quite low solid content (1.5 wt\%) by inkjet printing of the dispersion at an optimized viscosity and surface tension. Most importantly, thermal treatment of the Cu2O@PNIPAM microgels forms porous CuO nanocubes, which show much faster response to relevant trace NO2 gases than sensors produced from bare Cu2O nanocubes. This outcome is due to the fact that the PNIPAM shell can successfully hinder the aggregation of CuO nanoparticles during pyrolysis, which enables full utilization of the sensor layers and better access of the gas to active sites. These results point out great potential of such an innovative system as gas sensors with low cost, fast response and high sensitivity.}, language = {en} } @article{XieMeiXuetal.2021, author = {Xie, Dongjiu and Mei, Shilin and Xu, Yaolin and Quan, Ting and Haerk, Eneli and Kochovski, Zdravko and Lu, Yan}, title = {Efficient sulfur host based on yolk-shell iron oxide/sulfide-carbon nanospindles for lithium-sulfur batteries}, series = {ChemSusChem : chemistry, sustainability, energy, materials}, volume = {14}, journal = {ChemSusChem : chemistry, sustainability, energy, materials}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1864-5631}, doi = {10.1002/cssc.202002731}, pages = {1404 -- 1413}, year = {2021}, abstract = {Numerous nanostructured materials have been reported as efficient sulfur hosts to suppress the problematic "shuttling" of lithium polysulfides (LiPSs) in lithium-sulfur (Li-S) batteries. However, direct comparison of these materials in their efficiency of suppressing LiPSs shuttling is challenging, owing to the structural and morphological differences between individual materials. This study introduces a simple route to synthesize a series of sulfur host materials with the same yolk-shell nanospindle morphology but tunable compositions (Fe3O4, FeS, or FeS2), which allows for a systematic investigation into the specific effect of chemical composition on the electrochemical performances of Li-S batteries. Among them, the S/FeS2-C electrode exhibits the best performance and delivers an initial capacity of 877.6 mAh g(-1) at 0.5 C with a retention ratio of 86.7 \% after 350 cycles. This approach can also be extended to the optimization of materials for other functionalities and applications.}, language = {en} } @article{MeiKochovskiRoaetal.2019, author = {Mei, Shilin and Kochovski, Zdravko and Roa, Rafael and Gu, Sasa and Xu, Xiaohui and Yu, Hongtao and Dzubiella, Joachim and Ballauff, Matthias and Lu, Yan}, title = {Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation}, series = {Nano-Micro Letters}, volume = {11}, journal = {Nano-Micro Letters}, number = {1}, publisher = {Shanghai JIAO TONG univ press}, address = {Shanghai}, issn = {2311-6706}, doi = {10.1007/s40820-019-0314-9}, pages = {16}, year = {2019}, abstract = {Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.}, language = {en} } @article{QuanGoubardBretescheHaerketal.2019, author = {Quan, Ting and Goubard-Bretesche, Nicolas and Haerk, Eneli and Kochovski, Zdravko and Mei, Shilin and Pinna, Nicola and Ballauff, Matthias and Lu, Yan}, title = {Highly Dispersible Hexagonal Carbon-MoS2-Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors}, series = {Chemistry - a European journal}, volume = {25}, journal = {Chemistry - a European journal}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201806060}, pages = {4757 -- 4766}, year = {2019}, abstract = {MoS2, a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon-MoS2-carbon was successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m(2) g(-1), a total pore volume of 0.677 cm(3) g(-1), and fairly small mesopores (approximate to 5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g(-1) (0.12 F cm(-2)) at a constant current density of 0.1 Ag-1; thus suggesting that hollow carbon-MoS2 carbon nanoplates are promising candidate materials for supercapacitors.}, language = {en} } @article{MeiSiebertXuetal.2022, author = {Mei, Shilin and Siebert, Andreas and Xu, Yaolin and Quan, Ting and Garcia-Diez, Raul and B{\"a}r, Marcus and H{\"a}rtel, Paul and Abendroth, Thomas and D{\"o}rfler, Susanne and Kaskel, Stefan and Lu, Yan}, title = {Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells}, series = {Batteries \& supercaps}, volume = {5}, journal = {Batteries \& supercaps}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2566-6223}, doi = {10.1002/batt.202100398}, pages = {11}, year = {2022}, abstract = {Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li-S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- \& mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C-Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAhg(-1) at 0.05 C, a high-capacity retention of 83.7\% after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5\% at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li-S pouch cells.}, language = {en} } @article{MeiXuPriestleyetal.2020, author = {Mei, Shilin and Xu, Xiaohui and Priestley, Rodney D. and Lu, Yan}, title = {Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials}, series = {Chemical science}, volume = {11}, journal = {Chemical science}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6520}, doi = {10.1039/d0sc04486e}, pages = {12269 -- 12281}, year = {2020}, abstract = {Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed.}, language = {en} } @article{MeiJaftaLauermannetal.2017, author = {Mei, Shilin and Jafta, Charl J. and Lauermann, Iver and Ran, Qidi and Kaergell, Martin and Ballauff, Matthias and Lu, Yan}, title = {Porous Ti4O7 Particles with Interconnected-Pore Structure as a High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries}, series = {Advanced functional materials}, volume = {27}, journal = {Advanced functional materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201701176}, pages = {10}, year = {2017}, abstract = {Multifunctional Ti4O7 particles with interconnected-pore structure are designed and synthesized using porous poly(styrene-b-2-vinylpyridine) particles as a template. The particles can work efficiently as a sulfur-host material for lithium-sulfur batteries. Specifically, the well-defined porous Ti4O7 particles exhibit interconnected pores in the interior and have a high-surface area of 592 m(2) g(-1); this shows the advantage of mesopores for encapsulating of sulfur and provides a polar surface for chemical binding with polysulfides to suppress their dissolution. Moreover, in order to improve the conductivity of the electrode, a thin layer of carbon is coated on the Ti4O7 surface without destroying its porous structure. The porous Ti4O7 and carbon-coated Ti4O7 particles show significantly improved electrochemical performances as cathode materials for Li-S batteries as compared with those of TiO2 particles.}, language = {en} } @article{YuQuanMeietal.2019, author = {Yu, Hongtao and Quan, Ting and Mei, Shilin and Kochovski, Zdravko and Huang, Wei and Meng, Hong and Lu, Yan}, title = {Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode}, series = {Nano-Micro Letters}, volume = {11}, journal = {Nano-Micro Letters}, number = {41}, publisher = {Shanghai JIAO TONG univ press}, address = {Shanghai}, issn = {2311-6706}, doi = {10.1007/s40820-019-0269-x}, pages = {13}, year = {2019}, abstract = {HighlightsFacile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting. AbstractIn past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)(2) acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials ((10)(HER)=119mV and (50)(OER)=360mV) and can promote water catalysis at 1.70V@10mAcm(-2). More importantly, the recovery of raw materials (NF and Ni(NO3)(2)) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S similar to 70cm(2)) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.}, language = {en} }