@article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} } @article{PabloRichardsonMoffatetal.2015, author = {Pablo, Herbert and Richardson, Noel D. and Moffat, Anthony F. J. and Corcoran, Michael and Shenar, Tomer and Benvenuto, Omar and Fuller, Jim and Naze, Yael and Hoffman, Jennifer L. and Miroshnichenko, Anatoly and Apellaniz, Jesus Maiz and Evans, Nancy and Eversberg, Thomas and Gayley, Ken and Gull, Ted and Hamaguchi, Kenji and Hamann, Wolf-Rainer and Henrichs, Huib and Hole, Tabetha and Ignace, Richard and Iping, Rosina and Lauer, Jennifer and Leutenegger, Maurice and Lomax, Jamie and Nichols, Joy and Oskinova, Lida and Owocki, Stan and Pollock, Andy and Russell, Christopher M. P. and Waldron, Wayne and Buil, Christian and Garrel, Thierry and Graham, Keith and Heathcote, Bernard and Lemoult, Thierry and Li, Dong and Mauclaire, Benjamin and Potter, Mike and Ribeiro, Jose and Matthews, Jaymie and Cameron, Chris and Guenther, David and Kuschnig, Rainer and Rowe, Jason and Rucinski, Slavek and Sasselov, Dimitar and Weiss, Werner}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. III. Analysis of optical photometric (most) and spectroscopic (ground based) variations}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/134}, pages = {11}, year = {2015}, abstract = {We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.}, language = {en} } @article{RamiaramanantsoaMoffatHarmonetal.2018, author = {Ramiaramanantsoa, Tahina and Moffat, Anthony F. J. and Harmon, Robert and Ignace, R. and St-Louis, Nicole and Vanbeveren, Dany and Shenar, Tomer and Pablo, Herbert and Richardson, Noel D. and Howarth, Ian D. and Stevens, Ian R. and Piaulet, Caroline and St-Jean, Lucas and Eversberg, Thomas and Pigulski, Andrzej and Popowicz, Adam and Kuschnig, Rainer and Zoclonska, Elzbieta and Buysschaert, Bram and Handler, Gerald and Weiss, Werner W. and Wade, Gregg A. and Rucinski, Slavek M. and Zwintz, Konstanze and Luckas, Paul and Heathcote, Bernard and Cacella, Paulo and Powles, Jonathan and Locke, Malcolm and Bohlsen, Terry and Chen{\´e}, Andr{\´e}-Nicolas and Miszalski, Brent and Waldron, Wayne L. and Kotze, Marissa M. and Kotze, Enrico J. and B{\"o}hm, Torsten}, title = {BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant zeta Puppis unveils the photospheric drivers of its small- and large-scale wind structures}, series = {Monthly notices of the Royal Astronomical Society}, volume = {473}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2671}, pages = {5532 -- 5569}, year = {2018}, abstract = {From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He ii λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He ii λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.}, language = {en} } @article{RichardsonRussellStJeanetal.2017, author = {Richardson, Noel D. and Russell, Christopher M. P. and St-Jean, Lucas and Moffat, Anthony F. J. and St-Louis, Nicole and Shenar, Tomer and Pablo, Herbert and Hill, Grant M. and Ramiaramanantsoa, Tahina and Corcoran, Michael and Hamuguchi, Kenji and Eversberg, Thomas and Miszalski, Brent and Chene, Andre-Nicolas and Waldron, Wayne and Kotze, Enrico J. and Kotze, Marissa M. and Luckas, Paul and Cacella, Paulo and Heathcote, Bernard and Powles, Jonathan and Bohlsen, Terry and Locke, Malcolm and Handler, Gerald and Kuschnig, Rainer and Pigulski, Andrzej and Popowicz, Adam and Wade, Gregg A. and Weiss, Werner W.}, title = {The variability of the BRITE-est Wolf-Rayet binary, gamma(2) Velorum-I. Photometric and spectroscopic evidence for colliding winds}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1731}, pages = {2715 -- 2729}, year = {2017}, abstract = {We report on the first multi-colour precision light curve of the bright Wolf-Rayet binary gamma(2) Velorum, obtained over six months with the nanosatellites in the BRITE-Constellation fleet. In parallel, we obtained 488 high-resolution optical spectra of the system. In this first report on the data sets, we revise the spectroscopic orbit and report on the bulk properties of the colliding winds. We find a dependence of both the light curve and excess emission properties that scales with the inverse of the binary separation. When analysing the spectroscopic properties in combination with the photometry, we find that the phase dependence is caused only by excess emission in the lines, and not from a changing continuum. We also detect a narrow, high-velocity absorption component from the He perpendicular to lambda 5876 transition, which appears twice in the orbit. We calculate smoothed-particle hydrodynamical simulations of the colliding winds and can accurately associate the absorption from He perpendicular to to the leading and trailing arms of the wind shock cone passing tangentially through our line of sight. The simulations also explain the general strength and kinematics of the emission excess observed in wind lines such as C III lambda 5696 of the system. These results represent the first in a series of investigations into the winds and properties of gamma(2) Velorum through multi-technique and multi-wavelength observational campaigns.}, language = {en} }