@misc{KoenigGruneOtt2019, author = {K{\"o}nig, Jeannette and Grune, Tilman and Ott, Christiane}, title = {Assessing autophagy in murine skeletal muscle: current findings to modulate and quantify the autophagic flux}, series = {Current opinion in clinical nutrition and metabolic care}, volume = {22}, journal = {Current opinion in clinical nutrition and metabolic care}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1363-1950}, doi = {10.1097/MCO.0000000000000579}, pages = {355 -- 362}, year = {2019}, abstract = {Purpose of review In addition to the currently available lysosomotropic drugs and autophagy whole-body knockout mouse models, we provide alternative methods that enable the modulation and detection of autophagic flux in vivo, discussing advantages and disadvantages of each method. Recent findings With the autophagosome-lysosome fusion inhibitor colchicine in skeletal muscle and temporal downregulation of autophagy using a novel Autophagy related 5-short hairpin RNA (Atg5-shRNA) mouse model we mention two models that directly modulate autophagy flux in vivo. Furthermore, methods to quantify autophagy flux, such as mitophagy transgenic reporters, in situ immunofluorescent staining and multispectral imaging flow cytometry, in mature skeletal muscle and cells are addressed. To achieve clinical benefit, less toxic, temporary and cell-type-specific modulation of autophagy should be pursued further. A temporary knockdown as described for the Atg5-shRNA mice could provide a first insight into possible implications of autophagy inhibition. However, it is also important to take a closer look into the methods to evaluate autophagy after harvesting the tissue. In particular caution is required when experimental conditions can influence the final measurement and this should be pretested carefully.}, language = {en} }