@article{NathanMonkArlinghausetal.2022, author = {Nathan, Ran and Monk, Christopher T. and Arlinghaus, Robert and Adam, Timo and Al{\´o}s, Josep and Assaf, Michael and Baktoft, Henrik and Beardsworth, Christine E. and Bertram, Michael G. and Bijleveld, Allert and Brodin, Tomas and Brooks, Jill L. and Campos-Candela, Andrea and Cooke, Steven J. and Gjelland, Karl O. and Gupte, Pratik R. and Harel, Roi and Hellstrom, Gustav and Jeltsch, Florian and Killen, Shaun S. and Klefoth, Thomas and Langrock, Roland and Lennox, Robert J. and Lourie, Emmanuel and Madden, Joah R. and Orchan, Yotam and Pauwels, Ine S. and Riha, Milan and R{\"o}leke, Manuel and Schl{\"a}gel, Ulrike and Shohami, David and Signer, Johannes and Toledo, Sivan and Vilk, Ohad and Westrelin, Samuel and Whiteside, Mark A. and Jaric, Ivan}, title = {Big-data approaches lead to an increased understanding of the ecology of animal movement}, series = {Science}, volume = {375}, journal = {Science}, number = {6582}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.abg1780}, pages = {734 -- +}, year = {2022}, abstract = {Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.}, language = {en} } @misc{JaricHegerMonzonetal.2019, author = {Jaric, Ivan and Heger, Tina and Monzon, Federico Castro and Jeschke, Jonathan M. and Kowarik, Ingo and McConkey, Kim R. and Pysek, Petr and Sagouis, Alban and Essl, Franz}, title = {Crypticity in Biological Invasions}, series = {Trends in Ecology \& Evolution}, volume = {34}, journal = {Trends in Ecology \& Evolution}, number = {4}, publisher = {Elsevier}, address = {London}, issn = {0169-5347}, doi = {10.1016/j.tree.2018.12.008}, pages = {291 -- 302}, year = {2019}, abstract = {Ecological effects of alien species can be dramatic, but management and prevention of negative impacts are often hindered by crypticity of the species or their ecological functions. Ecological functions can change dramatically over time, or manifest after long periods of an innocuous presence. Such cryptic processes may lead to an underestimation of long-term impacts and constrain management effectiveness. Here, we present a conceptual framework of crypticity in biological invasions. We identify the underlying mechanisms, provide evidence of their importance, and illustrate this phenomenon with case studies. This framework has potential to improve the recognition of the full risks and impacts of invasive species.}, language = {en} } @misc{KalinkatCabralDarwalletal.2017, author = {Kalinkat, Gregor and Cabral, Juliano Sarmento and Darwall, William and Ficetola, G. Francesco and Fisher, Judith L. and Giling, Darren P. and Gosselin, Marie-Pierre and Grossart, Hans-Peter and Jaehnig, Sonja C. and Jeschke, Jonathan M. and Knopf, Klaus and Larsen, Stefano and Onandia, Gabriela and Paetzig, Marlene and Saul, Wolf-Christian and Singer, Gabriel and Sperfeld, Erik and Jaric, Ivan}, title = {Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity}, series = {Conservation biology : the journal of the Society for Conservation Biology}, volume = {31}, journal = {Conservation biology : the journal of the Society for Conservation Biology}, publisher = {Wiley}, address = {Hoboken}, issn = {0888-8892}, doi = {10.1111/cobi.12813}, pages = {481 -- 485}, year = {2017}, language = {en} } @misc{vanReesWaylenSchmidtKloiberetal.2020, author = {van Rees, Charles B. and Waylen, Kerry A. and Schmidt-Kloiber, Astrid and Thackeray, Stephen J. and Kalinkat, Gregor and Martens, Koen and Domisch, Sami and Lillebo, Ana and Hermoso, Virgilio and Grossart, Hans-Peter and Schinegger, Rafaela and Decleer, Kris and Adriaens, Tim and Denys, Luc and Jaric, Ivan and Janse, Jan H. and Monaghan, Michael T. and De Wever, Aaike and Geijzendorffer, Ilse and Adamescu, Mihai C. and J{\"a}hnig, Sonja C.}, title = {Safeguarding freshwater life beyond 2020}, series = {Conservation letters}, volume = {14}, journal = {Conservation letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-263X}, doi = {10.1111/conl.12771}, pages = {17}, year = {2020}, abstract = {Plans are currently being drafted for the next decade of action on biodiversity-both the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD) and Biodiversity Strategy of the European Union (EU). Freshwater biodiversity is disproportionately threatened and underprioritized relative to the marine and terrestrial biota, despite supporting a richness of species and ecosystems with their own intrinsic value and providing multiple essential ecosystem services. Future policies and strategies must have a greater focus on the unique ecology of freshwater life and its multiple threats, and now is a critical time to reflect on how this may be achieved. We identify priority topics including environmental flows, water quality, invasive species, integrated water resources management, strategic conservation planning, and emerging technologies for freshwater ecosystem monitoring. We synthesize these topics with decades of first-hand experience and recent literature into 14 special recommendations for global freshwater biodiversity conservation based on the successes and setbacks of European policy, management, and research. Applying and following these recommendations will inform and enhance the ability of global and European post-2020 biodiversity agreements to halt and reverse the rapid global decline of freshwater biodiversity.}, language = {en} }