@article{LevermannBamberDrijfhoutetal.2012, author = {Levermann, Anders and Bamber, Jonathan L. and Drijfhout, Sybren and Ganopolski, Andrey and Haeberli, Winfried and Harris, Neil R. P. and Huss, Matthias and Krueger, Kirstin and Lenton, Timothy M. and Lindsay, Ronald W. and Notz, Dirk and Wadhams, Peter and Weber, Susanne}, title = {Potential climatic transitions with profound impact on Europe Review of the current state of six 'tipping elements of the climate system'}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {110}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-011-0126-5}, pages = {845 -- 878}, year = {2012}, abstract = {We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the 'tipping' potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding.}, language = {en} } @article{SchaefliHuss2010, author = {Schaefli, Bettina and Huss, Matthias}, title = {Simulation of high mountainous discharge : how much information do we need?}, issn = {1812-2108}, doi = {10.5194/hessd-7-8661-2010}, year = {2010}, abstract = {The hydrologic cycle of high mountainous catchments is frequently simulated with simple precipitation-discharge models representing the snow accumulation and ablation behavior of a very complex environment with a set of lumped equations accounting for altitudinal temperature and precipitation gradients. In this study, we present a methodology to include sparse snow depths measurements into the calibration process. Based on this methodology, we assess for a case study, the Rhonegletscher catchment (Switzerland), how much observed information we need to reliably calibrate the model, such that it reproduces the dominant system dynamics, discharge, as well as glacier mass balance. Here, we focus on the question whether observed discharge is sufficient as a calibration variable or whether we need annual or even seasonal glacier mass balance data. Introducing seasonally variable accumulation and ablation parameters is sufficient to enable the simple model to reproduce observed seasonal mass balances for the Rhonegletscher. Furthermore, our results suggest that calibrating the hydrological model exclusively on discharge can lead to wrong representations of the intra- annual accumulation and ablation processes and to a strong bias in long term glacier mass balance simulations. Adding only a few annual mass balance observations considerably reduces this bias. Calibrating exclusively on annual balance data can, in turn, lead to wrong seasonal mass balance simulations. Even if these results are case study specific, our conclusions provide valuable new insights into the benefit of different types of observations for calibrating hydrological models in glacier catchments. The presented multi-signal calibration framework and the simple method to calibrate a semi-lumped model on point observations has potential for application in other modeling contexts.}, language = {en} } @article{FarinottiKingAlbrechtetal.2014, author = {Farinotti, Daniel and King, Edward C. and Albrecht, Anika and Huss, Matthias and Gudmundsson, Gudmundur Hilmar}, title = {The bedrock topography of Starbuck Glacier, Antarctic Peninsula, as determined by radio-echo soundings and flow modeling}, series = {Annals of glaciology}, volume = {55}, journal = {Annals of glaciology}, number = {67}, publisher = {International Glaciological Society}, address = {Cambridge}, issn = {0260-3055}, doi = {10.3189/2014AoG67A025}, pages = {22 -- 28}, year = {2014}, language = {en} } @misc{HussBookhagenHuggeletal.2017, author = {Huss, Matthias and Bookhagen, Bodo and Huggel, C. and Jacobsen, Dean and Bradley, Raymond S. and Clague, J. J. and Vuille, Mathias and Buytaert, Wouter and Cayan, D. R. and Greenwood, G. and Mark, B. G. and Milner, A. M. and Weingartner, Rolf and Winder, M.}, title = {Toward mountains without permanent snow and ice}, series = {Earths future}, volume = {5}, journal = {Earths future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2016EF000514}, pages = {418 -- 435}, year = {2017}, abstract = {The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier-and moraine-dammed lakes will threaten downstream populations.Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice.}, language = {en} }