@article{WeberAbuAyyashAbueladasetal.2009, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Alasonati-Taš{\´a}rov{\´a}, Zuzana and Al-Zubi, Hashim and Babeyko, Andrey and Bartov, Yuval and Bauer, Klaus and Becken, Michael and Bedrosian, Paul A. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bohnhoff, Marco and Bribach, Jens and Dulski, Peter and Ebbing, Joerg and El-Kelani, Radwan J. and Foerster, Andrea and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, Uri and Garfunkel, Zvi and G{\"o}tze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, Stefan L. and Hofstetter, Alfons and Hoffmann-Rothe, Arne and Jaeckel, Karl-Heinz and Janssen, Christoph and Jaser, Darweesh and Kesten, Dagmar and Khatib, Mohammed Ghiath and Kind, Rainer and Koch, Olaf and Koulakov, Ivan and Laske, Maria Gabi and Maercklin, Nils}, title = {Anatomy of the Dead Sea transform from lithospheric to microscopic scale}, issn = {8755-1209}, doi = {10.1029/2008rg000264}, year = {2009}, abstract = {Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere.}, language = {en} } @book{OnckenGoetzeStreckeretal.2005, author = {Oncken, Onno and G{\"o}tze, Hans-J{\"u}rgen and Strecker, Manfred and Franz, Gerhard and Kellner, Antje and Wigger, Peter}, title = {Deformation processes in the Andres : international final symposium, April 21 and 22, 2005, Geoforschungszentrum Potsdam, Telegrafenberg}, series = {Sonderforschungsbereich}, volume = {267}, journal = {Sonderforschungsbereich}, publisher = {Freie Universit{\"a}t}, address = {Berlin}, pages = {80 S.}, year = {2005}, language = {en} } @article{SpoonerScheckWenderothGoetzeetal.2019, author = {Spooner, Cameron and Scheck-Wenderoth, Magdalena and G{\"o}tze, Hans-J{\"u}rgen and Ebbing, J{\"o}rg and Hetenyi, Gyoergy}, title = {Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation}, series = {Solid earth}, volume = {10}, journal = {Solid earth}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {AlpArray Working Grp}, issn = {1869-9510}, doi = {10.5194/se-10-2073-2019}, pages = {2073 -- 2088}, year = {2019}, abstract = {The Alpine orogen formed as a result of the collision between the Adriatic and European plates. Significant crustal heterogeneity exists within the region due to the long history of interplay between these plates, other continental and oceanic blocks in the region, and inherited crustal features from earlier orogenies. Deformation relating to the collision continues to the present day. Here, a seismically constrained, 3-D structural and density model of the lithosphere of the Alps and their respective forelands, derived from integrating numerous geoscientific datasets, was adjusted to match the observed gravity field. It is shown that the distribution of seismicity and deformation within the region correlates well to thickness and density changes within the crust, and that the present-day Adriatic crust is both thinner and denser (22.5 km, 2800 kg m(-3) ) than the European crust (27.5 km, 2750 kg m(-3)). Alpine crust derived from each respective plate is found to show the same trend, with zones of Adriatic provenance (Austro-Alpine unit and Southern Alps) found to be denser and those of European provenance (Helvetic zone and Tauern Window) to be less dense. This suggests that the respective plates and related terranes had similar crustal properties to the present-day ones prior to orogenesis. The model generated here is available for open-access use to further discussions about the crust in the region.}, language = {en} } @article{PrezziUbaGoetze2009, author = {Prezzi, Claudia Beatriz and Uba, Cornelius Eji and G{\"o}tze, Hans-J{\"u}rgen}, title = {Flexural isostasy in the Bolivian Andes : Chaco foreland basin development}, issn = {0040-1951}, doi = {10.1016/j.tecto.2009.04.037}, year = {2009}, abstract = {The Chaco foreland basin was initiated during the late Oligocene as a result of thrusting in the Eastern Cordillera in response to Nazca-South America plate convergence. Foreland basins are the result of the flexural isostatic response of an elastic plate to orogenic and/or thrust sheet loading. We carried out flexural modelling along a W-E profile (21.4 degrees S) to investigate Chaco foreland basin development using new information on ages of foreland basin strata, elastic and sedimentary thicknesses and structural histories. It was possible to reproduce present-day elevation, gravity anomaly, Moho depth, elastic thicknesses, foreland sedimentary thicknesses and the basin geometry. Our model predicted the basin geometry and sedimentary thicknesses for different evolutionary stages. Measured thicknesses and previously proposed depozones were compared with our predictions. Our results shed more light on the Chaco foreland basin evolution and suggest that an apparent decrease in elastic thickness beneath the Eastern Cordillera and the Interandean Zone could have occurred between 14 and 6 Ma.}, language = {en} } @article{OnckenLuschenMechieetal.1999, author = {Oncken, Onno and Luschen, Ewald and Mechie, James and Sobolev, Stephan Vladimir and Schulze, Albrecht and Gaedicke, Christoph and Grunewald, Steffen and Bribach, Jens and Asch, G{\"u}nter and Giese, Peter and Wigger, Peter and Schmitz, Michael and Lueth, Stefan and Scheuber, Ekkehard and Haberland, Christian and Rietbrock, Andreas and G{\"o}tze, Hans-J{\"u}rgen and Brasse, Heinrich and Patzwahl, Regina and Chong, Guillermo and Wilke, Hans-Gerhard and Gonzalez, Gabriel and Jensen, Arturo and Araneda, Manuel and Vieytes, Hugo and Behn, Gerardo and Martinez, Eloy}, title = {Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle}, year = {1999}, language = {en} } @article{SpoonerScheckWenderothCacaceetal.2020, author = {Spooner, Cameron and Scheck-Wenderoth, Magdalena and Cacace, Mauro and G{\"o}tze, Hans-J{\"u}rgen and Luijendijk, Elco}, title = {The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity}, series = {Global and planetary change}, volume = {193}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2020.103288}, pages = {14}, year = {2020}, abstract = {Temperature exerts a first order control on rock strength, principally via thermally activated creep deformation and on the distribution at depth of the brittle-ductile transition zone. The latter can be regarded as the lower bound to the seismogenic zone, thereby controlling the spatial distribution of seismicity within a lithospheric plate. As such, models of the crustal thermal field are important to understand the localisation of seismicity. Here we relate results from 3D simulations of the steady state thermal field of the Alpine orogen and its forelands to the distribution of seismicity in this seismically active area of Central Europe. The model takes into account how the crustal heterogeneity of the region effects thermal properties and is validated with a dataset of wellbore temperatures. We find that the Adriatic crust appears more mafic, through its radiogenic heat values (1.30E-06 W/m3) and maximum temperature of seismicity (600 degrees C), than the European crust (1.3-2.6E-06 W/m3 and 450 degrees C). We also show that at depths of < 10 km the thermal field is largely controlled by sedimentary blanketing or topographic effects, whilst the deeper temperature field is primarily controlled by the LAB topology and the distribution and parameterization of radiogenic heat sources within the upper crust.}, language = {en} } @misc{MechieBenAvrahamWeberetal.2013, author = {Mechie, James and Ben-Avraham, Zvi and Weber, Michael H. and G{\"o}tze, Hans-J{\"u}rgen and Koulakov, Ivan and Mohsen, A. and Stiller, M.}, title = {The distribution of Moho depths beneath the Arabian plate and margins}, series = {TECTONOPHYSICS}, volume = {609}, journal = {TECTONOPHYSICS}, publisher = {ELSEVIER SCIENCE BV}, address = {AMSTERDAM}, issn = {0040-1951}, doi = {10.1016/j.tecto.2012.11.015}, pages = {234 -- 249}, year = {2013}, abstract = {In this study three new maps of Moho depths beneath the Arabian plate and margins are presented. The first map is based on the combined gravity model, EIGEN 06C, which includes data from satellite missions and ground-based studies, and thus covers the whole region between 31 degrees E and 60 inverted perpendicular E and between 12 degrees N and 36 degrees N. The second map is based on seismological and ground-based gravity data while the third map is based only on seismological data. Both these maps show gaps due to lack of data coverage especially in the interior of the Arabian plate. Beneath the interior of the Arabian plate the Moho lies between 32 and 45 km depth below sea level. There is a tendency for higher Pn and Sn velocities beneath the northeastern parts of the plate interior with respect to the southwestern parts of the plate interior. Across the northern, destructive margin with the Eurasian plate, the Moho depths increase to over 50 km beneath the Zagros mountains. Across the conservative western margin, the Dead Sea Transform (DST). Moho depths decrease from almost 40 km beneath the highlands east of the DST to about 21-23 km under the southeastern Mediterranean Sea. This decrease seems to be modulated by a slight depression in the Moho beneath the southern DST. The constructive southwestern and southeastern margins of the Arabian plate also show the Moho shallowing from the plate interior towards the plate boundaries. A comparison of the abruptness of the Moho shallowing between the margins of the Arabian plate, the conjugate African margin at 26 degrees N and several Atlantic margins shows a complex picture and suggests that the abruptness of the Moho shallowing may reflect fundamental differences in the original structure of the margins. (C) 2012 Elsevier B.V. All rights reserved.}, language = {en} }