@article{SchittkoBernardVerdierHegeretal.2020, author = {Schittko, Conrad and Bernard-Verdier, Maud and Heger, Tina and Buchholz, Sascha and Kowarik, Ingo and von der Lippe, Moritz and Seitz, Birgit and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {A multidimensional framework for measuring biotic novelty: How novel is a community?}, series = {Global Change Biology}, volume = {26}, journal = {Global Change Biology}, number = {8}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {17}, year = {2020}, abstract = {Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.}, language = {en} } @misc{SchittkoBernardVerdierHegeretal.2020, author = {Schittko, Conrad and Bernard-Verdier, Maud and Heger, Tina and Buchholz, Sascha and Kowarik, Ingo and von der Lippe, Moritz and Seitz, Birgit and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {A multidimensional framework for measuring biotic novelty: How novel is a community?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525657}, pages = {19}, year = {2020}, abstract = {Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.}, language = {en} } @article{HegerBernardVerdierGessleretal.2019, author = {Heger, Tina and Bernard-Verdier, Maud and Gessler, Arthur and Greenwood, Alex D. and Grossart, Hans-Peter and Hilker, Monika and Keinath, Silvia and Kowarik, Ingo and K{\"u}ffer, Christoph and Marquard, Elisabeth and Mueller, Johannes and Niemeier, Stephanie and Onandia, Gabriela and Petermann, Jana S. and Rillig, Matthias C. and Rodel, Mark-Oliver and Saul, Wolf-Christian and Schittko, Conrad and Tockner, Klement and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change}, series = {Bioscience}, volume = {69}, journal = {Bioscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biz095}, pages = {888 -- 899}, year = {2019}, abstract = {Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.}, language = {en} }