@misc{WozniakSicard2018, author = {Wozniak, Natalia Joanna and Sicard, Adrien}, title = {Evolvability of flower geometry}, series = {Seminars in cell \& developmental biology}, volume = {79}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.09.028}, pages = {3 -- 15}, year = {2018}, abstract = {Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{StreubelFritzTeltowetal.2018, author = {Streubel, Susanna and Fritz, Michael Andre and Teltow, Melanie and Kappel, Christian and Sicard, Adrien}, title = {Successive duplication-divergence mechanisms at the RCO locus contributed to leaf shape diversity in the Brassicaceae}, series = {Development : Company of Biologists}, volume = {145}, journal = {Development : Company of Biologists}, number = {8}, publisher = {Company of Biologists}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.164301}, pages = {10}, year = {2018}, abstract = {Gene duplication is a major driver for the increase of biological complexity. The divergence of newly duplicated paralogs may allow novel functions to evolve, while maintaining the ancestral one. Alternatively, partitioning the ancestral function among paralogs may allow parts of that role to follow independent evolutionary trajectories. We studied the REDUCED COMPLEXITY (RCO) locus, which contains three paralogs that have evolved through two independent events of gene duplication, and which underlies repeated events of leaf shape evolution within the Brassicaceae. In particular, we took advantage of the presence of three potentially functional paralogs in Capsella to investigate the extent of functional divergence among them. We demonstrate that the RCO copies control growth in different areas of the leaf. Consequently, the copies that are retained active in the different Brassicaceae lineages contribute to define the leaf dissection pattern. Our results further illustrate how successive gene duplication events and subsequent functional divergence can increase trait evolvability by providing independent evolutionary trajectories to specialized functions that have an additive effect on a given trait.}, language = {en} } @article{SicardThammMaronaetal.2014, author = {Sicard, Adrien and Thamm, Anna and Marona, Cindy and Lee, Young Wha and Wahl, Vanessa and Stinchcombe, John R. and Wright, Stephen I. and Kappel, Christian and Lenhard, Michael}, title = {Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene}, series = {Current biology}, volume = {24}, journal = {Current biology}, number = {16}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2014.06.061}, pages = {1880 -- 1886}, year = {2014}, abstract = {Elucidating the genetic basis of morphological changes in evolution remains a major challenge in biology [1-3]. Repeated independent trait changes are of particular interest because they can indicate adaptation in different lineages or genetic and developmental constraints on generating morphological variation [4-6]. In animals, changes to "hot spot" genes with minimal pleiotropy and large phenotypic effects underlie many cases of repeated morphological transitions [4-8]. By contrast, only few such genes have been identified from plants [8-11], limiting cross-kingdom comparisons of the principles of morphological evolution. Here, we demonstrate that the REDUCED COMPLEXITY (RCO) locus [12] underlies more than one naturally evolved change in leaf shape in the Brassicaceae. We show that the difference in leaf margin dissection between the sister species Capsella rubella and Capsella grandiflora is caused by cis-regulatory variation in the homeobox gene RCO-A, which alters its activity in the developing lobes of the leaf. Population genetic analyses in the ancestral C. grandiflora indicate that the more-active C. rubella haplotype is derived from a now rare or lost C. grandiflora haplotype via additional mutations. In Arabidopsis thaliana, the deletion of the RCO-A and RCO-B genes has contributed to its evolutionarily derived smooth leaf margin [12], suggesting the RCO locus as a candidate for an evolutionary hot spot. We also find that temperature-responsive expression of RCO-A can explain the phenotypic plasticity of leaf shape to ambient temperature in Capsella, suggesting a molecular basis for the well-known negative correlation between temperature and leaf margin dissection.}, language = {en} } @article{SicardStaceyHermannetal.2011, author = {Sicard, Adrien and Stacey, Nicola and Hermann, Katrin and Dessoly, Jimmy and Neuffer, Barbara and B{\"a}urle, Isabel and Lenhard, Michael}, title = {Genetics, evolution, and adaptive significance of the selfing syndrome in the genus Capsella}, series = {The plant cell}, volume = {23}, journal = {The plant cell}, number = {9}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.111.088237}, pages = {3156 -- 3171}, year = {2011}, abstract = {The change from outbreeding to selfing is one of the most frequent evolutionary transitions in flowering plants. It is often accompanied by characteristic morphological and functional changes to the flowers (the selfing syndrome), including reduced flower size and opening. Little is known about the developmental and genetic basis of the selfing syndrome, as well as its adaptive significance. Here, we address these issues using the two closely related species Capsella grandiflora (the ancestral outbreeder) and red shepherd's purse (Capsella rubella, the derived selfer). In C. rubella, petal size has been decreased by shortening the period of proliferative growth. Using interspecific recombinant inbred lines, we show that differences in petal size and flower opening between the two species each have a complex genetic basis involving allelic differences at multiple loci. An intraspecific cross within C. rubella suggests that flower size and opening have been decreased in the C. rubella lineage before its extensive geographical spread. Lastly, by generating plants that likely resemble the earliest ancestors of the C. rubella lineage, we provide evidence that evolution of the selfing syndrome was at least partly driven by selection for efficient self-pollination. Thus, our studies pave the way for a molecular dissection of selfing-syndrome evolution.}, language = {en} } @misc{SicardLenhard2011, author = {Sicard, Adrien and Lenhard, Michael}, title = {The selfing syndrome a model for studying the genetic and evolutionary basis of morphological adaptation in plants}, series = {Annals of botany}, volume = {107}, journal = {Annals of botany}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-7364}, doi = {10.1093/aob/mcr023}, pages = {1433 -- 1443}, year = {2011}, abstract = {Background In angiosperm evolution, autogamously selfing lineages have been derived from outbreeding ancestors multiple times, and this transition is regarded as one of the most common evolutionary tendencies in flowering plants. In most cases, it is accompanied by a characteristic set of morphological and functional changes to the flowers, together termed the selfing syndrome. Two major areas that have changed during evolution of the selfing syndrome are sex allocation to male vs. female function and flower morphology, in particular flower (mainly petal) size and the distance between anthers and stigma. Scope A rich body of theoretical, taxonomic, ecological and genetic studies have addressed the evolutionary modification of these two trait complexes during or after the transition to selfing. Here, we review our current knowledge about the genetics and evolution of the selfing syndrome. Conclusions We argue that because of its frequent parallel evolution, the selfing syndrome represents an ideal model for addressing basic questions about morphological evolution and adaptation in flowering plants, but that realizing this potential will require the molecular identification of more of the causal genes underlying relevant trait variation.}, language = {en} } @misc{SicardLenhard2018, author = {Sicard, Adrien and Lenhard, Michael}, title = {Capsella}, series = {Current biology}, volume = {28}, journal = {Current biology}, number = {17}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2018.06.033}, pages = {R920 -- R921}, year = {2018}, language = {en} } @article{SicardKappelLeeetal.2016, author = {Sicard, Adrien and Kappel, Christian and Lee, Young Wha and Wozniak, Natalia Joanna and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {113}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1613394113}, pages = {13911 -- 13916}, year = {2016}, abstract = {Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella. Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.}, language = {en} } @article{SicardKappelJosephsetal.2015, author = {Sicard, Adrien and Kappel, Christian and Josephs, Emily B. and Wha Lee, Young and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms8960}, year = {2015}, abstract = {In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.}, language = {en} } @article{SicardKappelJosephsetal.2015, author = {Sicard, Adrien and Kappel, Christian and Josephs, Emily B. and Lee, Young Wha and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms8960}, pages = {10}, year = {2015}, abstract = {In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.}, language = {en} } @article{MathieuRivetGevaudantSicardetal.2010, author = {Mathieu-Rivet, Elodie and G{\´e}vaudant, Fr{\´e}d{\´e}ric and Sicard, Adrien and Salar, Sophie and Do, Phuc Thi and Mouras, Armand and Fernie, Alisdair R. and Gibon, Yves and Rothan, Christophe and Chevalier, Christian and Hernould, Michel}, title = {Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo- reduplication for fruit growth in tomato}, issn = {1365-313X}, year = {2010}, language = {en} }