@misc{ZimmermannEckardtHornConradetal.2015, author = {Zimmermann, Matthias and Eckardt, Barbara and Horn-Conrad, Antje and J{\"a}ger, Heidi and Kampe, Heike and Scholz, Jana and G{\"o}rlich, Petra and S{\"u}tterlin, Sabine and J{\"a}ger, Sophie and Scherbaum, Frank}, title = {Portal Wissen = Wege}, number = {01/2015}, organization = {Universit{\"a}t Potsdam, Referat f{\"u}r Presse- und {\"O}ffentlichkeitsarbeit}, issn = {2194-4237}, doi = {10.25932/publishup-44085}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440851}, pages = {99}, year = {2015}, abstract = {Wie Merkmale von Generation zu Generation weitervererbt werden, wie sich die Erbinformation dabei durch Mutationen ver{\"a}ndert und somit zur Auspr{\"a}gung neuer Eigenschaften und der Entstehung neuer Arten beitr{\"a}gt, sind spannende Fragen der Biologie. Genetische Differenzierung f{\"u}hrte im Laufe von Jahrmillionen zur Ausbildung einer schier unglaublichen Artenvielfalt. Die Evolution hat viele Wege beschritten. Sie hat zu großartiger nat{\"u}rlicher Biodiversit{\"a}t gef{\"u}hrt - zu Organismen, die an sehr unterschiedliche Umwelten angepasst sind und zum Teil eine ulkige Gestalt haben oder ein merkw{\"u}rdiges Verhalten zeigen. Aber auch die von Menschenhand gemachte Biodiversit{\"a}t ist {\"u}berw{\"a}ltigend - man denke nur an die 10.000 verschiedenen Rosensorten, die uns entz{\"u}cken, oder die Myriaden unterschiedlicher Weizen-, Gerste- oder Maisvarianten; Pflanzen, die allesamt fr{\"u}her einmal einfache Gr{\"a}ser waren, uns heute aber ern{\"a}hren. Wir Menschen schaffen eine eigene Biodiversit{\"a}t, eine, die die Natur selbst nicht kennt. Und wir „fahren" gut damit. Dank der Genomforschung k{\"o}nnen wir heute die gesamte Erbinformation von Organismen in wenigen Stunden bis Tagen aus- lesen. Sehr viel l{\"a}nger dauert es aber, die zahlreichen Abschnitte eines Genoms funktionell zu kartieren. Die Wissenschaftler bedienen sich dazu vielf{\"a}ltiger Methoden: Dabei geh{\"o}rt es heute weltweit zum Standardrepertoire, Gene gezielt zu inaktivieren oder zu aktivieren, ihren Code zu modifizieren oder Erbinformationen zwischen Organismen auszutauschen. Dennoch sind die Wege, die zur Erkenntnis f{\"u}hren, oft verschlungen. Nicht selten m{\"u}ssen ausgekl{\"u}gelte experimentelle Ans{\"a}tze gew{\"a}hlt werden, um neue Einsichten in biologische Prozesse zu gewinnen. Mit den Methoden der Genomforschung k{\"o}nnen wir nicht nur das erkunden, was sich in der Natur „da draußen" findet. Wir k{\"o}nnen auch fragen: „Wie verh{\"a}lt sich ein Lebewesen, beispielsweise ein Moos, eigentlich, wenn wir es zur International Space Station (ISS) schicken? Und k{\"o}nnen wir daraus Kenntnisse gewinnen {\"u}ber die Anpassungsstrategien von Lebewesen an harsche Umweltbedingungen oder gar f{\"u}r eine sp{\"a}tere Besiedlung des Mondes oder des Mars´?" Oder k{\"o}nnen wir mithilfe der synthetischen Biologie Mikroorganismen pr{\"a}zise, quasi am Reißbrett geplant, so ver{\"a}ndern, dass neue Optionen f{\"u}r die Behandlung von Krankheiten und f{\"u}r die Herstellung innovativer biobasierter Produkte entstehen? Die Antwort auf beide Fragen lautet eindeutig: Ja! (Wenngleich ein Umzug auf andere Planeten derzeit nat{\"u}rlich nicht vornan steht.). Landnutzung durch den Menschen bestimmt die Biodiversit{\"a}t. Andererseits tragen Organismen zur landschaftlichen Formenbildung bei und beeinflussen {\"u}ber kurz oder lang die Zusammensetzung unserer Atmosph{\"a}re. Auch hier gibt es spannende Fragen, mit denen sich die Forschung besch{\"a}ftigt. Um neue Erkenntnisse zu gewinnen, m{\"u}ssen Forscher immer wieder neue Wege einschlagen. Oft kreuzen sich auch Pfade. So war es beispielsweise vor wenigen Jahren noch kaum absehbar, wir stark die {\"o}kologische Forschung beispielsweise von den schnellen DNA-Sequenziermethoden profitieren w{\"u}rde, und die Genomforscher unter uns konnten kaum erahnen, wie die gleichen Techniken uns neue M{\"o}glichkeiten an die Hand geben sollten, die hochkomplexe Regulation in Zellen zu untersuchen und f{\"u}r die Optimierung biotechnologischer Prozesse zu nutzen. Beispiele aus den vielf{\"a}ltigen Facetten der biologischen Forschung finden Sie - neben anderen interessanten Beitr{\"a}gen - in der aktuellen Ausgabe von „Portal Wissen". Ich w{\"u}nsche Ihnen eine anregende Lekt{\"u}re! Prof. Dr. Bernd M{\"u}ller-R{\"o}ber Professor f{\"u}r Molekularbiologie}, language = {de} } @misc{ZaliReinKruegeretal.2023, author = {Zali, Zahra and Rein, Teresa and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic-percussive separation algorithms}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1320}, issn = {1866-8372}, doi = {10.25932/publishup-58882}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588828}, pages = {15}, year = {2023}, abstract = {Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic-percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data.}, language = {en} } @article{ZaliReinKruegeretal.2023, author = {Zali, Zahra and Rein, Teresa and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic-percussive separation algorithms}, series = {Solid earth}, volume = {14}, journal = {Solid earth}, number = {2}, publisher = {Coepernicus Publ.}, address = {G{\"o}ttingen}, issn = {1869-9529}, doi = {10.5194/se-14-181-2023}, pages = {181 -- 195}, year = {2023}, abstract = {Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic-percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data.}, language = {en} } @article{ZaliOhrnbergerScherbaumetal.2021, author = {Zali, Zahra and Ohrnberger, Matthias and Scherbaum, Frank and Cotton, Fabrice and Eibl, Eva P. S.}, title = {Volcanic tremor extraction and earthquake detection using music information retrieval algorithms}, series = {Seismological research letters}, volume = {92}, journal = {Seismological research letters}, number = {6}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210016}, pages = {3668 -- 3681}, year = {2021}, abstract = {Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78\% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84\% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events.}, language = {en} } @article{WeberAbuAyyashAbueladasetal.2004, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Al-Amoush, H. and Babeyko, Andrey and Bartov, Yosef and Baumann, M. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bribach, Jens and El-Kelani, R. and Forster, A. and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, U. and Garfunkel, Zvi and Grunewald, Steffen and Gotze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, S. and Hofstetter, Alfons and Jackel, K. H. and Kesten, Dagmar and Kind, Rainer and Maercklin, Nils and Mechie, James and Mohsen, Amjad and Neubauer, F. M. and Oberh{\"a}nsli, Roland and Qabbani, I. and Ritter, O. and Rumpker, G. and Rybakov, M. and Ryberg, Trond and Scherbaum, Frank and Schmidt, J. and Schulze, A. and Sobolev, Stephan Vladimir and Stiller, M. and Th,}, title = {The crustal structure of the Dead Sea Transform}, year = {2004}, abstract = {To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries}, language = {en} } @article{WassermannOhrnbergerScherbaumetal.1998, author = {Wassermann, Joachim and Ohrnberger, Matthias and Scherbaum, Frank and Gossler, J. and Zschau, Jochen}, title = {Kontinuierliche seismologische Netz- und Arraymessungen am Dekadenvulkan Merapi (Java, Indonesien) : ein Zwischenres{\"u}mee = Continuous measurements at Merapi volcano (Java, Indonesia) using anetwork of small-scale seismograph arrays}, issn = {0947-1944}, year = {1998}, language = {de} } @article{VogelRiggelsenKorupetal.2014, author = {Vogel, Kristin and Riggelsen, Carsten and Korup, Oliver and Scherbaum, Frank}, title = {Bayesian network learning for natural hazard analyses}, series = {Natural hazards and earth system sciences}, volume = {14}, journal = {Natural hazards and earth system sciences}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-14-2605-2014}, pages = {2605 -- 2626}, year = {2014}, abstract = {Modern natural hazards research requires dealing with several uncertainties that arise from limited process knowledge, measurement errors, censored and incomplete observations, and the intrinsic randomness of the governing processes. Nevertheless, deterministic analyses are still widely used in quantitative hazard assessments despite the pitfall of misestimating the hazard and any ensuing risks. In this paper we show that Bayesian networks offer a flexible framework for capturing and expressing a broad range of uncertainties encountered in natural hazard assessments. Although Bayesian networks are well studied in theory, their application to real-world data is far from straightforward, and requires specific tailoring and adaptation of existing algorithms. We offer suggestions as how to tackle frequently arising problems in this context and mainly concentrate on the handling of continuous variables, incomplete data sets, and the interaction of both. By way of three case studies from earthquake, flood, and landslide research, we demonstrate the method of data-driven Bayesian network learning, and showcase the flexibility, applicability, and benefits of this approach. Our results offer fresh and partly counterintuitive insights into well-studied multivariate problems of earthquake-induced ground motion prediction, accurate flood damage quantification, and spatially explicit landslide prediction at the regional scale. In particular, we highlight how Bayesian networks help to express information flow and independence assumptions between candidate predictors. Such knowledge is pivotal in providing scientists and decision makers with well-informed strategies for selecting adequate predictor variables for quantitative natural hazard assessments.}, language = {en} } @article{TranThanhTuanScherbaumMalischewsky2011, author = {Tran Thanh Tuan, and Scherbaum, Frank and Malischewsky, Peter G.}, title = {On the relationship of peaks and troughs of the ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models}, series = {Geophysical journal international}, volume = {184}, journal = {Geophysical journal international}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2010.04863.x}, pages = {793 -- 800}, year = {2011}, abstract = {One of the key challenges in the context of local site effect studies is the determination of frequencies where the shakeability of the ground is enhanced. In this context, the H/V technique has become increasingly popular and peak frequencies of H/V spectral ratio are sometimes interpreted as resonance frequencies of the transmission response. In the present study, assuming that Rayleigh surface wave is dominant in H/V spectral ratio, we analyse theoretically under which conditions this may be justified and when not. We focus on 'layer over half-space' models which, although seemingly simple, capture many aspects of local site effects in real sedimentary structures. Our starting point is the ellipticity of Rayleigh waves. We use the exact formula of the H/V-ratio presented by Malischewsky \& Scherbaum (2004) to investigate the main characteristics of peak and trough frequencies. We present a simple formula illustrating if and where H/V-ratio curves have sharp peaks in dependence of model parameters. In addition, we have constructed a map, which demonstrates the relation between the H/V-peak frequency and the peak frequency of the transmission response in the domain of the layer's Poisson ratio and the impedance contrast. Finally, we have derived maps showing the relationship between the H/V-peak and trough frequency and key parameters of the model such as impedance contrast. These maps are seen as diagnostic tools, which can help to guide the interpretation of H/V spectral ratio diagrams in the context of site effect studies.}, language = {en} } @article{ThomasWeberWicksetal.1999, author = {Thomas, Ch. and Weber, Michael H. and Wicks, Chuck and Scherbaum, Frank}, title = {Small scatterers in the lower mantle observed at German broadband arrays}, year = {1999}, language = {en} } @article{ThomasIgelWeberetal.2000, author = {Thomas, Ch. and Igel, Heiner and Weber, Michael H. and Scherbaum, Frank}, title = {Acoustic simulation of P-wave propagation in a heterogeneous spherical earth : numerical method and application to precursor waves to PKPdf}, year = {2000}, language = {en} }