@article{WinterSchneebergerDungetal.2019, author = {Winter, Benjamin and Schneeberger, Klaus and Dung, N. V. and Huttenlau, M. and Achleitner, S. and St{\"o}tter, J. and Merz, Bruno and Vorogushyn, Sergiy}, title = {A continuous modelling approach for design flood estimation on sub-daily time scale}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {64}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {5}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2019.1593419}, pages = {539 -- 554}, year = {2019}, abstract = {Design flood estimation is an essential part of flood risk assessment. Commonly applied are flood frequency analyses and design storm approaches, while the derived flood frequency using continuous simulation has been getting more attention recently. In this study, a continuous hydrological modelling approach on an hourly time scale, driven by a multi-site weather generator in combination with a -nearest neighbour resampling procedure, based on the method of fragments, is applied. The derived 100-year flood estimates in 16 catchments in Vorarlberg (Austria) are compared to (a) the flood frequency analysis based on observed discharges, and (b) a design storm approach. Besides the peak flows, the corresponding runoff volumes are analysed. The spatial dependence structure of the synthetically generated flood peaks is validated against observations. It can be demonstrated that the continuous modelling approach can achieve plausible results and shows a large variability in runoff volume across the flood events.}, language = {en} } @article{WietzkeMerzGerlitzetal.2020, author = {Wietzke, Luzie M. and Merz, Bruno and Gerlitz, Lars and Kreibich, Heidi and Guse, Bj{\"o}rn and Castellarin, Attilio and Vorogushyn, Sergiy}, title = {Comparative analysis of scalar upper tail indicators}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {65}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1769104}, pages = {1625 -- 1639}, year = {2020}, abstract = {Different upper tail indicators exist to characterize heavy tail phenomena, but no comparative study has been carried out so far. We evaluate the shape parameter (GEV), obesity index, Gini index and upper tail ratio (UTR) against a novel benchmark of tail heaviness - the surprise factor. Sensitivity analyses to sample size and changes in scale-to-location ratio are carried out in bootstrap experiments. The UTR replicates the surprise factor best but is most uncertain and only comparable between records of similar length. For samples with symmetric Lorenz curves, shape parameter, obesity and Gini indices provide consistent indications. For asymmetric Lorenz curves, however, the first two tend to overestimate, whereas Gini index tends to underestimate tail heaviness. We suggest the use of a combination of shape parameter, obesity and Gini index to characterize tail heaviness. These indicators should be supported with calculation of the Lorenz asymmetry coefficients and interpreted with caution.}, language = {en} } @article{WendiMerzMarwan2019, author = {Wendi, Dadiyorto and Merz, Bruno and Marwan, Norbert}, title = {Assessing hydrograph similarity and rare runoff dynamics by cross recurrence plots}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2018WR024111}, pages = {4704 -- 4726}, year = {2019}, abstract = {This paper introduces a novel measure to assess similarity between event hydrographs. It is based on cross recurrence plots (CRP) and recurrence quantification analysis (RQA), which have recently gained attention in a range of disciplines when dealing with complex systems. The method attempts to quantify the event runoff dynamics and is based on the time delay embedded phase space representation of discharge hydrographs. A phase space trajectory is reconstructed from the event hydrograph, and pairs of hydrographs are compared to each other based on the distance of their phase space trajectories. Time delay embedding allows considering the multidimensional relationships between different points in time within the event. Hence, the temporal succession of discharge values is taken into account, such as the impact of the initial conditions on the runoff event. We provide an introduction to cross recurrence plots and discuss their parameterization. An application example based on flood time series demonstrates how the method can be used to measure the similarity or dissimilarity of events, and how it can be used to detect events with rare runoff dynamics. It is argued that this methods provides a more comprehensive approach to quantify hydrograph similarity compared to conventional hydrological signatures.}, language = {en} } @article{WendiMarwanMerz2018, author = {Wendi, Dadiyorto and Marwan, Norbert and Merz, Bruno}, title = {In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots}, series = {International journal of bifurcation and chaos : in applied sciences and engineering}, volume = {28}, journal = {International journal of bifurcation and chaos : in applied sciences and engineering}, number = {1}, publisher = {World Scientific}, address = {Singapore}, issn = {0218-1274}, doi = {10.1142/S0218127418500074}, pages = {15}, year = {2018}, abstract = {As an effort to reduce parameter uncertainties in constructing recurrence plots, and in particular to avoid potential artefacts, this paper presents a technique to derive artefact-safe region of parameter sets. This technique exploits both deterministic (incl. chaos) and stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is useful when the evaluated signal is known to be deterministic. This study focuses on the recurrence plot generated from the reconstructed phase space in order to represent many real application scenarios when not all variables to describe a system are available (data scarcity). The technique involves random shuffling of the original signal to destroy its original deterministic characteristics. Its purpose is to evaluate whether the determinism values of the original and the shuffled signal remain closely together, and therefore suggesting that the recurrence plot might comprise artefacts. The use of such determinism-sensitive region shall be accompanied by standard embedding optimization approaches, e.g. using indices like false nearest neighbor and mutual information, to result in a more reliable recurrence plot parameterization.}, language = {en} } @article{UllrichHegnauerNguyenetal.2021, author = {Ullrich, Sophie Louise and Hegnauer, Mark and Nguyen, Dung Viet and Merz, Bruno and Kwadijk, Jaap and Vorogushyn, Sergiy}, title = {Comparative evaluation of two types of stochastic weather generators for synthetic precipitation in the Rhine basin}, series = {Journal of hydrology}, volume = {601}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2021.126544}, pages = {16}, year = {2021}, abstract = {Stochastic modeling of precipitation for estimation of hydrological extremes is an important element of flood risk assessment and management. The spatially consistent estimation of rainfall fields and their temporal variability remains challenging and is addressed by various stochastic weather generators. In this study, two types of weather generators are evaluated against observed data and benchmarked regarding their ability to simulate spatio-temporal precipitation fields in the Rhine catchment. A multi-site station-based weather generator uses an auto-regressive model and estimates the spatial correlation structure between stations. Another weather generator is raster-based and uses the nearest-neighbor resampling technique for reshuffling daily patterns while preserving the correlation structure between the observations. Both weather generators perform well and are comparable at the point (station) scale with regards to daily mean and 99.9th percentile precipitation as well as concerning wet/dry frequencies and transition probabilities. The areal extreme precipitation at the sub-basin scale is however overestimated in the station-based weather generator due to an overestimation of the correlation structure between individual stations. The auto-regressive model tends to generate larger rainfall fields in space for extreme precipitation than observed, particularly in summer. The weather generator based on nearest-neighbor resampling reproduces the observed daily and multiday (5, 10 and 20) extreme events in a similar magnitude. Improvements in performance regarding wet frequencies and transition probabilities are recommended for both models.}, language = {en} } @article{UhlemannThiekenMerz2014, author = {Uhlemann, Steffi and Thieken, Annegret and Merz, Bruno}, title = {A quality assessment framework for natural hazard event documentation: application to trans-basin flood reports in Germany}, series = {Natural hazards and earth system sciences}, volume = {14}, journal = {Natural hazards and earth system sciences}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-14-189-2014}, pages = {189 -- 208}, year = {2014}, language = {en} } @article{UhlemannBertelmannMerz2013, author = {Uhlemann, S. and Bertelmann, Roland and Merz, Bruno}, title = {Data expansion the potential of grey literature for understanding floods}, series = {Hydrology and earth system sciences : HESS}, volume = {17}, journal = {Hydrology and earth system sciences : HESS}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-17-895-2013}, pages = {895 -- 911}, year = {2013}, abstract = {Sophisticated methods have been developed and become standard in analysing floods as well as for assessing flood risk. However, increasingly critique of the current standards and scientific practice can be found both in the flood hydrology community as well as in the risk community who argue that the considerable amount of information already available on natural disasters has not been adequately deployed and brought to effective use. We describe this phenomenon as a failure to synthesize knowledge that results from barriers and ignorance in awareness, use and management of the entire spectrum of relevant content, that is, data, information and knowledge. In this paper we argue that the scientific community in flood risk research ignores event-specific analysis and documentations as another source of data. We present results from a systematic search that includes an intensive study on sources and ways of information dissemination of flood-relevant publications. We obtain 186 documents that contain information on the sources, pathways, receptors and/or consequences for any of the 40 strongest trans-basin floods in Germany in the period 1952-2002. This study therefore provides the most comprehensive metadata collection of flood documentations for the considered geographical space and period. A total of 87.5\% of all events have been documented, and especially the most severe floods have received extensive coverage. Only 30\% of the material has been produced in the scientific/academic environment, and the majority of all documents (about 80\%) can be considered grey literature (i.e. literature not controlled by commercial publishers). Therefore, ignoring grey sources in flood research also means ignoring the largest part of knowledge available on single flood events (in Germany). Further, the results of this study underpin the rapid changes in information dissemination of flood event literature over the last decade. We discuss the options and obstacles of incorporating this data into the knowledge-building process in light of the current technological developments and international, interdisciplinary debates for data curation.}, language = {en} } @article{TrietDungMerzetal.2018, author = {Triet, Nguyen Van Khanh and Dung, Nguyen Viet and Merz, Bruno and Apel, Heiko}, title = {Towards risk-based flood management in highly productive paddy rice cultivation}, series = {Natural hazards and earth system sciences}, volume = {18}, journal = {Natural hazards and earth system sciences}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-18-2859-2018}, pages = {2859 -- 2876}, year = {2018}, abstract = {Flooding is an imminent natural hazard threatening most river deltas, e.g. the Mekong Delta. An appropriate flood management is thus required for a sustainable development of the often densely populated regions. Recently, the traditional event-based hazard control shifted towards a risk management approach in many regions, driven by intensive research leading to new legal regulation on flood management. However, a large-scale flood risk assessment does not exist for the Mekong Delta. Particularly, flood risk to paddy rice cultivation, the most important economic activity in the delta, has not been performed yet. Therefore, the present study was developed to provide the very first insight into delta-scale flood damages and risks to rice cultivation. The flood hazard was quantified by probabilistic flood hazard maps of the whole delta using a bivariate extreme value statistics, synthetic flood hydrographs, and a large-scale hydraulic model. The flood risk to paddy rice was then quantified considering cropping calendars, rice phenology, and harvest times based on a time series of enhanced vegetation index (EVI) derived from MODIS satellite data, and a published rice flood damage function. The proposed concept provided flood risk maps to paddy rice for the Mekong Delta in terms of expected annual damage. The presented concept can be used as a blueprint for regions facing similar problems due to its generic approach. Furthermore, the changes in flood risk to paddy rice caused by changes in land use currently under discussion in the Mekong Delta were estimated. Two land-use scenarios either intensifying or reducing rice cropping were considered, and the changes in risk were presented in spatially explicit flood risk maps. The basic risk maps could serve as guidance for the authorities to develop spatially explicit flood management and mitigation plans for the delta. The land-use change risk maps could further be used for adaptive risk management plans and as a basis for a cost-benefit of the discussed land-use change scenarios. Additionally, the damage and risks maps may support the recently initiated agricultural insurance programme in Vietnam.}, language = {en} } @misc{TrietDungMerzetal.2018, author = {Triet, Nguyen Van Khanh and Dung, Nguyen Viet and Merz, Bruno and Apel, Heiko}, title = {Towards risk-based flood management in highly productive paddy rice cultivation}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {931}, issn = {1866-8372}, doi = {10.25932/publishup-44603}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446032}, pages = {2859 -- 2876}, year = {2018}, abstract = {Flooding is an imminent natural hazard threatening most river deltas, e.g. the Mekong Delta. An appropriate flood management is thus required for a sustainable development of the often densely populated regions. Recently, the traditional event-based hazard control shifted towards a risk management approach in many regions, driven by intensive research leading to new legal regulation on flood management. However, a large-scale flood risk assessment does not exist for the Mekong Delta. Particularly, flood risk to paddy rice cultivation, the most important economic activity in the delta, has not been performed yet. Therefore, the present study was developed to provide the very first insight into delta-scale flood damages and risks to rice cultivation. The flood hazard was quantified by probabilistic flood hazard maps of the whole delta using a bivariate extreme value statistics, synthetic flood hydrographs, and a large-scale hydraulic model. The flood risk to paddy rice was then quantified considering cropping calendars, rice phenology, and harvest times based on a time series of enhanced vegetation index (EVI) derived from MODIS satellite data, and a published rice flood damage function. The proposed concept provided flood risk maps to paddy rice for the Mekong Delta in terms of expected annual damage. The presented concept can be used as a blueprint for regions facing similar problems due to its generic approach. Furthermore, the changes in flood risk to paddy rice caused by changes in land use currently under discussion in the Mekong Delta were estimated. Two land-use scenarios either intensifying or reducing rice cropping were considered, and the changes in risk were presented in spatially explicit flood risk maps. The basic risk maps could serve as guidance for the authorities to develop spatially explicit flood management and mitigation plans for the delta. The land-use change risk maps could further be used for adaptive risk management plans and as a basis for a cost-benefit of the discussed land-use change scenarios. Additionally, the damage and risks maps may support the recently initiated agricultural insurance programme in Vietnam.}, language = {en} } @article{ThiekenApelMerz2015, author = {Thieken, Annegret and Apel, Heiko and Merz, Bruno}, title = {Assessing the probability of large-scale flood loss events: a case study for the river Rhine, Germany}, series = {Journal of flood risk management}, volume = {8}, journal = {Journal of flood risk management}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1753-318X}, doi = {10.1111/jfr3.12091}, pages = {247 -- 262}, year = {2015}, abstract = {Flood risk analyses are often estimated assuming the same flood intensity along the river reach under study, i.e. discharges are calculated for a number of return periods T, e.g. 10 or 100 years, at several streamflow gauges. T-year discharges are regionalised and then transferred into T-year water levels, inundated areas and impacts. This approach assumes that (1) flood scenarios are homogeneous throughout a river basin, and (2) the T-year damage corresponds to the T-year discharge. Using a reach at the river Rhine, this homogeneous approach is compared with an approach that is based on four flood types with different spatial discharge patterns. For each type, a regression model was created and used in a Monte-Carlo framework to derive heterogeneous scenarios. Per scenario, four cumulative impact indicators were calculated: (1) the total inundated area, (2) the exposed settlement and industrial areas, (3) the exposed population and 4) the potential building loss. Their frequency curves were used to establish a ranking of eight past flood events according to their severity. The investigation revealed that the two assumptions of the homogeneous approach do not hold. It tends to overestimate event probabilities in large areas. Therefore, the generation of heterogeneous scenarios should receive more attention.}, language = {en} }