@article{SierLangereisDupontNivetetal.2017, author = {Sier, Mark J. and Langereis, Cor G. and Dupont-Nivet, Guillaume and Feibel, Craig S. and Joordens, Josephine C. A. and van der Lubbe, Jeroen Fiji. and Beck, Catherine C. and Olago, Daniel and Cohen, Andrew}, title = {The top of the Olduvai Subchron in a high-resolution magnetostratigraphy from the West Turkana core WTK13, hominin sites and Paleolakes Drilling Project (HSPDP)}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {42}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, organization = {WTK Science Team Members}, issn = {1871-1014}, doi = {10.1016/j.quageo.2017.08.004}, pages = {117 -- 129}, year = {2017}, abstract = {One of the major challenges in understanding the evolution of our own species is identifying the role climate change has played in the evolution of hominin species. To clarify the influence of climate, we need long and continuous high-resolution paleoclimate records, preferably obtained from hominin-bearing sediments, that are well-dated by tephro- and magnetostratigraphy and other methods. This is hindered, however, by the fact that fossil-bearing outcrop sediments are often discontinuous, and subject to weathering, which may lead to oxidation and remagnetization. To obtain fresh, unweathered sediments, the Hominin Sites and Paleolakes Drilling Project (HSPDP) collected a \&\#8764;216-meter core (WTK13) in 2013 from Early Pleistocene Paleolake Lorenyang deposits in the western Turkana Basin (Kenya). Here, we present the magnetostratigraphy of the WTK13 core, providing a first age model for upcoming HSPDP paleoclimate and paleoenvrionmental studies on the core sediments. Rock magnetic analyses reveal the presence of iron sulfides carrying the remanent magnetizations. To recover polarity orientation from the near-equatorial WTK13 core drilled at 5°N, we developed and successfully applied two independent drill-core reorientation methods taking advantage of (1) the sedimentary fabric as expressed in the Anisotropy of Magnetic Susceptibility (AMS) and (2) the occurrence of a viscous component oriented in the present day field. The reoriented directions reveal a normal to reversed polarity reversal identified as the top of the Olduvai Subchron. From this excellent record, we find no evidence for the 'Vrica Subchron' previously reported in the area. We suggest that outcrop-based interpretations supporting the presence of the Vrica Subchron have been affected by the oxidation of iron sulfides initially present in the sediments -as evident in the core record- and by subsequent remagnetization. We discuss the implications of the observed geomagnetic record for human evolution studies.}, language = {en} } @article{DeinoSierGarelloetal.2019, author = {Deino, Alan L. and Sier, Mark Jan and Garello, Dominique and Keller, B. and Kingston, John and Scott, Jennifer J. and Dupont-Nivet, Guillaume and Cohen, Andrew}, title = {Chronostratigraphy of the Baringo-Tugen-Barsemoi (HSPDP-BTB13-1A) core-Ar-40/Ar-39 dating, magnetostratigraphy, tephrostratigraphy, sequence stratigraphy and Bayesian age modeling}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {532}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2019.109258}, pages = {16}, year = {2019}, abstract = {The Baringo-Tugen-Barsemoi 2013 drillcore (BTB13), acquired as part of the Hominin Sites and Paleolakes Drilling Project, recovered 228 m of fluviolacustrine sedimentary rocks and tuffs spanning a similar to 3.29-2.56 Ma interval of the highly fossiliferous and hominin-bearing Chemeron Formation, Tugen Hills, Kenya. Here we present a Bayesian stratigraphic age model for the core employing chronostratigraphic control points derived from Ar-40/Ar-39 dating of tuffs from core and outcrop, Ar-40/Ar-39 age calibration of related outcrop diatomaceous units, and core magnetostratigraphy. The age model reveals three main intervals with distinct sediment accumulation rates: an early rapid phase from 3.2 to 2.9 Ma; a relatively slow phase from 2.9 to 2.7 Ma; and the highest rate of accumulation from 2.7 to 2.6 Ma. The intervals of rapid accumulation correspond to periods of high Earth orbital eccentricity, whereas the slow accumulation interval corresponds to low eccentricity at 2.9-2.7 Ma, suggesting that astronomically mediated climate processes may be responsible for the observed changes in sediment accumulation rate. Lacustrine transgression-regression events, as delineated using sequence stratigraphy, dominantly operate on precession scale, particularly within the high eccentricity periods. A set of erosively based fluvial conglomerates correspond to the 2.9-2.7 Ma interval, which could be related to either the depositional response to low eccentricity or to the development of unconformities due to local tectonic activity. Age calibration of core magnetic susceptibility and gamma density logs indicates a close temporal correspondence between a shift from high- to low-frequency signal variability at similar to 3 Ma, approximately coincident the end of the mid-Piacenzian Warm Period, and the beginning of the cooling of world climate leading to the initiation of Northern Hemispheric glaciation c. 2.7 Ma. BTB13 and the Baringo Basin records may thus provide evidence of a connection between high-latitude glaciation and equatorial terrestrial climate toward the end of the Pliocene.}, language = {en} }