@misc{JayNorellKunnusetal.2018, author = {Jay, Raphael J. and Norell, Jesper and Kunnus, Kristjan and Lundberg, Marcus and Gaffney, Kelly and Wernet, Philippe and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Dynamcis of local charge densities and metal-ligand covalency in iron complexes from femtosecond resonant inelastic soft X-ray scattering}, series = {Abstracts of Papers of the American Chemical Society}, volume = {256}, journal = {Abstracts of Papers of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, url = {http://nbn-resolving.de/urn:nbn:se:uu:diva-370051}, pages = {2}, year = {2018}, language = {en} } @article{JayNorellEckertetal.2018, author = {Jay, Raphael M. and Norell, Jesper and Eckert, Sebastian and Hantschmann, Markus and Beye, Martin and Kennedy, Brian and Quevedo, Wilson and Schlotter, William F. and Dakovski, Georgi L. and Minitti, Michael P. and Hoffmann, Matthias C. and Mitra, Ankush and Moeller, Stefan P. and Nordlund, Dennis and Zhang, Wenkai and Liang, Huiyang W. and Kunnus, Kristian and Kubicek, Katharina and Techert, Simone A. and Lundberg, Marcus and Wernet, Philippe and Gaffney, Kelly and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering}, series = {The journal of physical chemistry letters}, volume = {9}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b01429}, pages = {3538 -- 3543}, year = {2018}, abstract = {Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. pi-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences sigma-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes.}, language = {en} } @article{KubinGuoKrolletal.2018, author = {Kubin, Markus and Guo, Meiyuan and Kroll, Thomas and Loechel, Heike and Kallman, Erik and Baker, Michael L. and Mitzner, Rolf and Gul, Sheraz and Kern, Jan and F{\"o}hlisch, Alexander and Erko, Alexei and Bergmann, Uwe and Yachandra, Vittal and Yano, Junko and Lundberg, Marcus and Wernet, Philippe}, title = {Probing the oxidation state of transition metal complexes}, series = {Chemical science}, volume = {9}, journal = {Chemical science}, number = {33}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6520}, doi = {10.1039/c8sc00550h}, pages = {6813 -- 6829}, year = {2018}, abstract = {Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of Mn-III in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.}, language = {en} } @misc{KubinGuoKrolletal.2018, author = {Kubin, Markus and Guo, Meiyuan and Kroll, Thomas and L{\"o}chel, Heike and K{\"a}llman, Erik and Baker, Michael L. and Mitzner, Rolf and Gul, Sheraz and Kern, Jan and F{\"o}hlisch, Alexander and Erko, Alexei and Bergmann, Uwe and Yachandra, Vittal and Yano, Junko and Lundberg, Marcus and Wernet, Philippe}, title = {Probing the oxidation state of transition metal complexes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {656}, issn = {1866-8372}, doi = {10.25932/publishup-42505}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425057}, pages = {17}, year = {2018}, abstract = {Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of Mn-III in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.}, language = {en} } @article{LeitnerJosefssonMazzaetal.2018, author = {Leitner, T. and Josefsson, Ida and Mazza, T. and Miedema, Piter S. and Schr{\"o}der, H. and Beye, Martin and Kunnus, Kristjan and Schreck, S. and D{\"u}sterer, Stefan and F{\"o}hlisch, Alexander and Meyer, M. and Odelius, Michael and Wernet, Philippe}, title = {Time-resolved electron spectroscopy for chemical analysis of photodissociation}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {149}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5035149}, pages = {12}, year = {2018}, abstract = {The prototypical photoinduced dissociation of Fe(CO)(5) in the gas phase is used to test time-resolved x-ray photoelectron spectroscopy for studying photochemical reactions. Upon one-photon excitation at 266 nm, Fe(CO)(5) successively dissociates to Fe(CO)(4) and Fe(CO)(3) along a pathway where both fragments retain the singlet multiplicity of Fe(CO)(5). The x-ray free-electron laser FLASH is used to probe the reaction intermediates Fe(CO)(4) and Fe(CO)(3) with time-resolved valence and core-level photoelectron spectroscopy, and experimental results are interpreted with ab initio quantum chemical calculations. Changes in the valence photoelectron spectra are shown to reflect changes in the valenceorbital interactions upon Fe-CO dissociation, thereby validating fundamental theoretical concepts in Fe-CO bonding. Chemical shifts of CO 3 sigma inner-valence and Fe 3 sigma core-level binding energies are shown to correlate with changes in the coordination number of the Fe center. We interpret this with coordination-dependent charge localization and core-hole screening based on calculated changes in electron densities upon core-hole creation in the final ionic states. This extends the established capabilities of steady-state electron spectroscopy for chemical analysis to time-resolved investigations. It could also serve as a benchmark for howcharge and spin density changes in molecular dissociation and excited-state dynamics are expressed in valence and core-level photoelectron spectroscopy. Published by AIP Publishing.}, language = {en} } @misc{NorellJayHantschmannetal.2018, author = {Norell, Jesper and Jay, Raphael and Hantschmann, Markus and Eckert, Sebastian and Guo, Meiyuan and Gaffney, Kelly and Wernet, Philippe and Lundberg, Marcus and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft x-ray scattering in transient photo-chemical species}, series = {Physical chemistry, chemical physics}, journal = {Physical chemistry, chemical physics}, number = {20}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/c7cp08326b}, pages = {7243 -- 7253}, year = {2018}, abstract = {We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L3-edge RIXS in the ferricyanide complex Fe(CN)63-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.}, language = {en} } @misc{NorellJayHantschmannetal.2018, author = {Norell, Jesper and Jay, Raphael Martin and Hantschmann, Markus and Eckert, Sebastian and Guo, Meiyuan and Gaffney, Kelly J. and Wernet, Philippe and Lundberg, Marcus and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {779}, issn = {1866-8372}, doi = {10.25932/publishup-43749}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437493}, pages = {7243 -- 7253}, year = {2018}, abstract = {We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L-3-edge RIXS in the ferricyanide complex Fe(CN)(6)(3-), we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.}, language = {en} }