@article{BlumeSchneiderGuentner2021, author = {Blume, Theresa and Schneider, Lisa and G{\"u}ntner, Andreas}, title = {Comparative analysis of throughfall observations in six different forest stands}, series = {Hydrological processes}, volume = {36}, journal = {Hydrological processes}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.14461}, pages = {21}, year = {2021}, abstract = {Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which are in turn both subject to seasonal dynamics. Disentangling the complex interplay of these controls is challenging, and only possible with long-term monitoring and a large number of throughfall events measured in parallel at different forest stands. We therefore based our analysis on 346 rainfall events across six different forest stands at the long-term terrestrial environmental observatory TERENO Northeast Germany. These forest stands included pure stands of beech, pine and young pine, and mixed stands of oak-beech, pine-beech and pine-oak-beech. Throughfall was overall relatively low, with 54-68\% of incident rainfall in summer. Based on the large number of events it was possible to not only investigate mean or cumulative throughfall but also its statistical distribution. The distributions of throughfall fractions show distinct differences between the three types of forest stands (deciduous, mixed and pine). The distributions of the deciduous stands have a pronounced peak at low throughfall fractions and a secondary peak at high fractions in summer, as well as a pronounced peak at higher throughfall fractions in winter. Interestingly, the mixed stands behave like deciduous stands in summer and like pine stands in winter: their summer distributions are similar to the deciduous stands but the winter peak at high throughfall fractions is much less pronounced. The seasonal comparison further revealed that the wooden components and the leaves behaved differently in their throughfall response to incident rainfall, especially at higher rainfall intensities. These results are of interest for estimating forest water budgets and in the context of hydrological and land surface modelling where poor simulation of throughfall would adversely impact estimates of evaporative recycling and water availability for vegetation and runoff.}, language = {en} } @misc{HargisGotschPoradaetal.2019, author = {Hargis, Hailey and Gotsch, Sybil G. and Porada, Philipp and Moore, Georgianne W. and Ferguson, Briana and Van Stan, John T.}, title = {Arboreal epiphytes in the soil-atmosphere interface}, series = {Geosciences}, volume = {9}, journal = {Geosciences}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences9080342}, pages = {17}, year = {2019}, abstract = {Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte "bucket" is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20\% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend similar to 1/3 of their time in the dry state (0-10\% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied-as even the canopy soils were often <50\% saturated (29-53\% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of "net" precipitation waters reaching the surface.}, language = {en} } @misc{HargisGotschPoradaetal.2019, author = {Hargis, Hailey and Gotsch, Sybil G. and Porada, Philipp and Moore, Georgianne W. and Ferguson, Briana and Van Stan II, John T.}, title = {Arboreal epiphytes in the soil-atmosphere interface}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {928}, issn = {1866-8372}, doi = {10.25932/publishup-44199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441993}, pages = {19}, year = {2019}, abstract = {Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte "bucket" is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20\% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend ~1/3 of their time in the dry state (0-10\% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied—as even the canopy soils were often <50\% saturated (29-53\% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of "net" precipitation waters reaching the surface.}, language = {en} } @phdthesis{Baese2016, author = {B{\"a}se, Frank}, title = {Interception loss of changing land covers in the humid tropical lowland of Latin America}, school = {Universit{\"a}t Potsdam}, pages = {ix, 85 Seiten}, year = {2016}, abstract = {Das Gebiet der feuchten Tropen ist die am st{\"a}rksten durch den Landnutzungswandel betroffene Region der Erde. Vor allem die Rodung tropischer W{\"a}lder, um Platz f{\"u}r Rinderweiden oder den Anbau von Soja zu schaffen, aber auch seit j{\"u}ngster Zeit die Bem{\"u}hungen um Wiederaufforstungen pr{\"a}gen diesen Landnutzungswandel. Dabei beeinflusst die {\"A}nderung der Vegetationsbedeckung den regionalen Wasserhaushalt auf vielf{\"a}ltige Weise. Betroffen ist unter anderem die Verdunstung von feuchten Oberfl{\"a}chen. Die so genannte Interzeptionsverdunstung bzw. der Interzeptionsverlust tr{\"a}gt erheblich zum Wasserdampfgehalt in der unteren Atmosph{\"a}re und schließlich zur Niederschlagsbildung bei. Ziele dieser Dissertation waren (1) die experimentelle Untersuchung der Interzeptionsverlustunterschiede zwischen einem nat{\"u}rlichen, tropischen Wald und einer Sojaplantage im s{\"u}dlichen Amazonasgebiet, (2) die Modellierung des Interzeptionsverlustes dieser beiden Vegetationsformen im Vergleich zu einem jungen Sekund{\"a}rwald unter dem Aspekt der Unsicherheiten bei der Ableitung notwendiger Modellparameter sowohl im S{\"u}damazonas als auch im Einzugsgebietes des Panamakanals sowie (3) die Wasserhaushaltsanalyse eines vom Landnutzungswandel gepr{\"a}gten Teileinzugsgebietes des Panamakanals in Hinblick auf die Ver{\"a}nderung der Interzeptionsverdunstung durch sich ver{\"a}ndernde Landnutzung und der {\"A}nderung der klimatischen Bedingungen. Die Messung des Interzeptionsverlustes zeigte, dass in der Hauptwachstumsphase vom Soja von dessen Oberfl{\"a}che mehr Wasserverdunstet als von der Oberfl{\"a}che des Waldes. Allerdings ist in der Jahresbilanz der Interzeptionsverlust vom Wald h{\"o}her, da diese Studie nur eine Momentaufnahme zur Zeit der vollen Vegetationsentwicklung des Sojas mit einem Zeitfenster von zwei Monaten widerspiegelt. Durch die geringere ganzj{\"a}hrige Verdunstung von den mit Soja bestandenen Fl{\"a}chen, wird hier der Niederschlag schneller dem Abfluss zugef{\"u}hrt und schell aus der Region ausgetragen. Somit tr{\"a}gt der Landnutzungswandel von Wald zu Soja zu einer mittelfristigen Reduktion des in der Region verf{\"u}gbaren Wassers bei. Die anschließende Modellierung des Interzeptionsverlustes zeigte Einerseits einen starken Einfluss der Datenqualit{\"a}t auf die Plausibilit{\"a}t der Ergebnisse und Andererseits, dass die Sensitivit{\"a}t der einzelnen Parameter zwischen den Untersuchungsgebieten variiert. Eine Schl{\"u}sselrolle nimmt die Wasserspeicherkapazit{\"a}t der Vegetationskrone ein. Dennoch ist die Evaporationsrate die treibende Gr{\"o}ße im Interzeptionsprozess, so dass von ihr die gr{\"o}ßte Unsicherheit ausgeht. Je nach verwendeter Methode zur Ableitung dieses Parameters unterscheiden sich die gewonnenen Parameterwerte erheblich. Die Wirkungsanalyse der Interzeptionsverdunstung auf den Wasserhaushalt im Wirkungsgeflecht der {\"A}nderungen von Temperatur, Niederschlag und Landnutzung im Landschaftsmosaik eines Flusseinzugsgebiets mit Hilfe eines Wasserhaushaltsmodels zeigte den Einfluss der Landnutzungs{\"a}nderung auf die Abflussbildung mittels verschiedener Landnutzungsszenarien. Die Ergebnisse belegen, dass die Landnutzungs{\"a}nderung im Gebiet nur einen geringen Einfluss auf den Jahresabfluss hat. St{\"a}rker scheint sich der gemessene Temperaturanstieg auf die Verdunstung auszuwirken. Der mit einer h{\"o}heren Temperatur einhergehende Anstieg der Transpiration und Interzeptionsverdunstung gleicht die gemessene Zunahme des Gebietsniederschlages aus, sodass keine signifikanten {\"A}nderungen im Jahresabfluss nachgewiesen werden konnten. Die Ergebnisse der drei Studien verdeutlichen den Einfluss der Landnutzung auf die Interzeptionsverdunstung. Allerdings veranschaulichten die Resultate der Wasserhaushalts-modellierung, wie sehr dieser Einfluss durch die Ver{\"a}nderung der {\"a}ußeren Rahmenbedingungen, vor allem durch den Anstieg der Temperatur, {\"u}berpr{\"a}gt werden kann. Dies belegt, dass eine einfache {\"U}bertragung der Ergebnisse zwischen den Untersuchungsgebiet nicht m{\"o}glich ist. Somit bleibt die experimentelle Erhebung von Vegetationsparametern sowie des Interzeptionsverlustes an den jeweils zu untersuchenden Standort f{\"u}r die Anwendung von Modellen unerl{\"a}sslich.}, language = {en} }