@article{PaulkeStranksKniepertetal.2016, author = {Paulke, Andreas and Stranks, Samuel D. and Kniepert, Juliane and Kurpiers, Jona and Wolff, Christian Michael and Sch{\"o}n, Natalie and Snaith, Henry J. and Brenner, Thomas J. K. and Neher, Dieter}, title = {Charge carrier recombination dynamics in perovskite and polymer solar cells}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4944044}, pages = {252 -- 262}, year = {2016}, abstract = {Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH3NH3PbI3) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10(-9) cm(3)/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC71BM yields important differences with regard to the mechanism and time scale of free carrier recombination. (C) 2016 AIP Publishing LLC.}, language = {en} } @article{ChenSavateevPronkinetal.2017, author = {Chen, Zupeng and Savateev, Aleksandr and Pronkin, Sergey and Papaefthimiou, Vasiliki and Wolff, Christian Michael and Willinger, Marc Georg and Willinger, Elena and Neher, Dieter and Antonietti, Markus and Dontsova, Dariya}, title = {"The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts}, series = {Advanced materials}, volume = {29}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201700555}, pages = {21800 -- 21806}, year = {2017}, abstract = {Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.}, language = {en} } @article{KegelmannWolffAwinoetal.2017, author = {Kegelmann, Lukas and Wolff, Christian Michael and Awino, Celline and Lang, Felix and Unger, Eva L. and Korte, Lars and Dittrich, Thomas and Neher, Dieter and Rech, Bernd and Albrecht, Steve}, title = {It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b00900}, pages = {17246 -- 17256}, year = {2017}, abstract = {Solar cells made from inorganic organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 degrees C is presented. The inorganic metal oxides TiO2 and SnO2, the organic fullerene derivatives C-60, PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop, the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO2, which shows a more prominent influence of defect states. Transient photoluminescence studies together with current voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0\%. The results indicate reduced recombination losses for a double-layer TiO2/PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells.}, language = {en} } @article{JoštAlbrechtKegelmannetal.2017, author = {Jošt, Marko and Albrecht, Steve and Kegelmann, Lukas and Wolff, Christian Michael and Lang, Felix and Lipovšek, Benjamin and Krč, Janez and Korte, Lars and Neher, Dieter and Rech, Bernd and Topič, Marko}, title = {Efficient light management by textured nanoimprinted layers for perovskite solar cells}, series = {ACS photonics}, volume = {4}, journal = {ACS photonics}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.7b00138}, pages = {1232 -- 1239}, year = {2017}, abstract = {Inorganic-organic perovskites like methylammonium-lead-iodide have proven to be an effective class of 17 materials for fabricating efficient solar cells. To improve their performance, light management techniques using textured surfaces, similar to those used in established solar cell technologies, should be considered. Here, we apply a light management foil created by UV nanoimprint lithography on the glass side of an inverted (p-i-n) perovskite solar cell with 16.3\% efficiency. The obtained 1 mA cm(-2) increase in the short-circuit current density translates to a relative improvement in cell performance of 5\%, which results in a power conversion efficiency of 17.1\%. Optical 3D simulations based on experimentally obtained parameters were used to support the experimental findings. A good match between the simulated and experimental data was obtained, validating the model. Optical simulations reveal that the main improvement in device performance is due to a reduction in total reflection and that relative improvement in the short-circuit current density of up to 10\% is possible for large-area devices. Therefore, our results present the potential of light management foils for improving the device performance of perovskite solar cells and pave the way for further use of optical simulations in the field of perovskite solar cells.}, language = {en} } @article{WolffZuPaulkeetal.2017, author = {Wolff, Christian Michael and Zu, Fengshuo and Paulke, Andreas and Perdig{\´o}n-Toro, Lorena and Koch, Norbert and Neher, Dieter}, title = {Reduced Interface-Mediated Recombination for High Open-Circuit Voltages in CH3NH3PbI3 Solar Cells}, series = {Advanced materials}, volume = {29}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201700159}, pages = {8}, year = {2017}, abstract = {Perovskite solar cells with all-organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high-temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron-transporting layer of inverted perovskite cells affects the open-circuit voltage (V-OC). It is shown that nonradiative recombination mediated by the electron-transporting layer is the limiting factor for the V-OC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3\%, a V-OC as high as 1.16 V, and a power conversion efficiency of 19.4\% are realized. The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high V-OC and efficiency.}, language = {en} } @article{StolterfohtWolffAmiretal.2017, author = {Stolterfoht, Martin and Wolff, Christian Michael and Amir, Yohai and Paulke, Andreas and Perdig{\´o}n-Toro, Lorena and Caprioglio, Pietro and Neher, Dieter}, title = {Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells}, series = {Energy \& Environmental Science}, volume = {10}, journal = {Energy \& Environmental Science}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/c7ee00899f}, pages = {1530 -- 1539}, year = {2017}, abstract = {Perovskite solar cells now compete with their inorganic counterparts in terms of power conversion efficiency, not least because of their small open-circuit voltage (V-OC) losses. A key to surpass traditional thin-film solar cells is the fill factor (FF). Therefore, more insights into the physical mechanisms that define the bias dependence of the photocurrent are urgently required. In this work, we studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL). Using integral time of flight we identify the transit time through the HTL as the key figure of merit for maximizing the fill factor (FF) and efficiency. Complementarily, intensity dependent photocurrent and V-OC measurements elucidate the role of the HTL on the bias dependence of non-radiative and transport-related loss channels. We show that charge transport losses can be completely avoided under certain conditions, yielding devices with FFs of up to 84\%. Optimized cells exhibit power conversion efficiencies of above 20\% for 6 mm(2) sized pixels and 18.9\% for a device area of 1 cm(2). These are record efficiencies for hybrid perovskite devices with dopant-free transport layers, highlighting the potential of this device technology to avoid charge-transport limitations and to approach the Shockley-Queisser limit.}, language = {en} } @article{BraungerMundtWolffetal.2018, author = {Braunger, Steffen and Mundt, Laura E. and Wolff, Christian Michael and Mews, Mathias and Rehermann, Carolin and Jost, Marko and Tejada, Alvaro and Eisenhauer, David and Becker, Christiane and Andres Guerra, Jorge and Unger, Eva and Korte, Lars and Neher, Dieter and Schubert, Martin C. and Rech, Bernd and Albrecht, Steve}, title = {Cs(x)FA(1-x)Pb(l(1-y)Br(y))(3) Perovskite Compositions}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b06459}, pages = {17123 -- 17135}, year = {2018}, abstract = {We report on the formation of wrinkle-patterned surface morphologies in cesium formamidinium-based Cs(x)FA(1-y)Pb(I1-yBry)(3) perovskite compositions with x = 0-0.3 and y = 0-0.3 under various spin-coating conditions. By varying the Cs and Br contents, the perovskite precursor solution concentration and the spin-coating procedure, the occurrence and characteristics of the wrinkle-shaped morphology can be tailored systematically. Cs(0.17)FA(0.83)Pb(I0.83Br0.17)(3) perovskite layers were analyzed regarding their surface roughness, microscopic structure, local and overall composition, and optoelectronic properties. Application of these films in p-i-n perovskite solar cells (PSCs) with indium-doped tin oxide/NiOx/perovskite/C-60/bathocuproine/Cu architecture resulted in up to 15.3 and 17.0\% power conversion efficiency for the flat and wrinkled morphology, respectively. Interestingly, we find slightly red-shifted photoluminescence (PL) peaks for wrinkled areas and we are able to directly correlate surface topography with PL peak mapping. This is attributed to differences in the local grain size, whereas there is no indication for compositional demixing in the films. We show that the perovskite composition, crystallization kinetics, and layer thickness strongly influence the formation of wrinkles which is proposed to be related to the release of compressive strain during perovskite crystallization. Our work helps us to better understand film formation and to further improve the efficiency of PSCs with widely used mixed-perovskite compositions.}, language = {en} } @misc{SalibaStolterfohtWolffetal.2018, author = {Saliba, Michael and Stolterfoht, Martin and Wolff, Christian Michael and Neher, Dieter and Abate, Antonio}, title = {Measuring aging stability of perovskite solar cells}, series = {Joule}, volume = {2}, journal = {Joule}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {2542-4351}, doi = {10.1016/j.joule.2018.05.005}, pages = {1019 -- 1024}, year = {2018}, language = {en} } @article{StolterfohtWolffMarquezetal.2018, author = {Stolterfoht, Martin and Wolff, Christian Michael and Marquez, Jose A. and Zhang, Shanshan and Hages, Charles J. and Rothhardt, Daniel and Albrecht, Steve and Burn, Paul L. and Meredith, Paul and Unold, Thomas and Neher, Dieter}, title = {Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells}, series = {Nature Energy}, volume = {3}, journal = {Nature Energy}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-018-0219-8}, pages = {847 -- 854}, year = {2018}, abstract = {The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20\% efficiency (19.83\% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81\%).}, language = {en} } @article{KegelmannTockhornWolffetal.2019, author = {Kegelmann, Lukas and Tockhorn, Philipp and Wolff, Christian Michael and M{\´a}rquez, Jos{\´e} A. and Caicedo D{\´a}vila, Sebasti{\´a}n and Korte, Lars and Unold, Thomas and Loevenich, Wilfried and Neher, Dieter and Rech, Bernd and Albrecht, Steve}, title = {Mixtures of Dopant-Free Spiro-OMeTAD and Water-Free PEDOT as a Passivating Hole Contact in Perovskite Solar Cells}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b01332}, pages = {9172 -- 9181}, year = {2019}, abstract = {Doped spiro-OMeTAD at present is the most commonly used hole transport material (HTM) in n-i-p-type perovskite solar cells, enabling high efficiencies around 22\%. However, the required dopants were shown to induce nonradiative recombination of charge carriers and foster degradation of the solar cell. Here, in a novel approach, highly conductive and inexpensive water-free poly(3,4-ethylenedioxythiophene) (PEDOT) is used to replace these dopants. The resulting spiro-OMeTAD/PEDOT (SpiDOT) mixed films achieve higher lateral conductivities than layers of doped spiro-OMeTAD. Furthermore, combined transient and steady-state photoluminescence studies reveal a passivating effect of PEDOT, suppressing nonradiative recombination losses at the perovskite/HTM interface. This enables excellent quasi-Fermi level splitting values of up to 1.24 eV in perovskite/SpiDOT layer stacks and high open-circuit voltages (V-OC) up to 1.19 V in complete solar cells. Increasing the amount of dopant-free spiro-OMeTAD in SpiDOT layers is shown to enhance hole extraction and thereby improves the fill factor in solar cells. As a consequence, stabilized efficiencies up to 18.7\% are realized, exceeding cells with doped spiro-OMeTAD as a HTM in this study. Moreover, to the best of our knowledge, these results mark the lowest nonradiative recombination loss in the V-OC (140 mV with respect to the Shockley-Queisser limit) and highest efficiency reported so far for perovskite solar cells using PEDOT as a HTM.}, language = {en} }