@article{KellerLiuPeyerimhoff2021, author = {Keller, Matthias and Liu, Shiping and Peyerimhoff, Norbert}, title = {A note on eigenvalue bounds for non-compact manifolds}, series = {Mathematische Nachrichten}, volume = {294}, journal = {Mathematische Nachrichten}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0025-584X}, doi = {10.1002/mana.201900209}, pages = {1134 -- 1139}, year = {2021}, abstract = {In this article we prove upper bounds for the Laplace eigenvalues lambda(k) below the essential spectrum for strictly negatively curved Cartan-Hadamard manifolds. Our bound is given in terms of k(2) and specific geometric data of the manifold. This applies also to the particular case of non-compact manifolds whose sectional curvature tends to -infinity, where no essential spectrum is present due to a theorem of Donnelly/Li. The result stands in clear contrast to Laplacians on graphs where such a bound fails to be true in general.}, language = {en} } @article{SaynischWagnerBaerenzungHornschildetal.2021, author = {Saynisch-Wagner, Jan and B{\"a}renzung, Julien and Hornschild, Aaron and Irrgang, Christopher and Thomas, Maik}, title = {Tide-induced magnetic signals and their errors derived from CHAMP and Swarm satellite magnetometer observations}, series = {Earth, planets and space : EPS}, volume = {73}, journal = {Earth, planets and space : EPS}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1880-5981}, doi = {10.1186/s40623-021-01557-3}, pages = {11}, year = {2021}, abstract = {Satellite-measured tidal magnetic signals are of growing importance. These fields are mainly used to infer Earth's mantle conductivity, but also to derive changes in the oceanic heat content. We present a new Kalman filter-based method to derive tidal magnetic fields from satellite magnetometers: KALMAG. The method's advantage is that it allows to study a precisely estimated posterior error covariance matrix. We present the results of a simultaneous estimation of the magnetic signals of 8 major tides from 17 years of Swarm and CHAMP data. For the first time, robustly derived posterior error distributions are reported along with the reported tidal magnetic fields. The results are compared to other estimates that are either based on numerical forward models or on satellite inversions of the same data. For all comparisons, maximal differences and the corresponding globally averaged RMSE are reported. We found that the inter-product differences are comparable with the KALMAG-based errors only in a global mean sense. Here, all approaches give values of the same order, e.g., 0.09 nT-0.14 nT for M2. Locally, the KALMAG posterior errors are up to one order smaller than the inter-product differences, e.g., 0.12 nT vs. 0.96 nT for M2.}, language = {en} } @article{WormellReich2021, author = {Wormell, Caroline L. and Reich, Sebastian}, title = {Spectral convergence of diffusion maps}, series = {SIAM journal on numerical analysis / Society for Industrial and Applied Mathematics}, volume = {59}, journal = {SIAM journal on numerical analysis / Society for Industrial and Applied Mathematics}, number = {3}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {0036-1429}, doi = {10.1137/20M1344093}, pages = {1687 -- 1734}, year = {2021}, abstract = {Diffusion maps is a manifold learning algorithm widely used for dimensionality reduction. Using a sample from a distribution, it approximates the eigenvalues and eigenfunctions of associated Laplace-Beltrami operators. Theoretical bounds on the approximation error are, however, generally much weaker than the rates that are seen in practice. This paper uses new approaches to improve the error bounds in the model case where the distribution is supported on a hypertorus. For the data sampling (variance) component of the error we make spatially localized compact embedding estimates on certain Hardy spaces; we study the deterministic (bias) component as a perturbation of the Laplace-Beltrami operator's associated PDE and apply relevant spectral stability results. Using these approaches, we match long-standing pointwise error bounds for both the spectral data and the norm convergence of the operator discretization. We also introduce an alternative normalization for diffusion maps based on Sinkhorn weights. This normalization approximates a Langevin diffusion on the sample and yields a symmetric operator approximation. We prove that it has better convergence compared with the standard normalization on flat domains, and we present a highly efficient rigorous algorithm to compute the Sinkhorn weights.}, language = {en} } @article{ChangKhalilSchulze2021, author = {Chang, Der-Chen and Khalil, Sara and Schulze, Bert-Wolfgang}, title = {Analysis on regular corner spaces}, series = {The journal of geometric analysis}, volume = {31}, journal = {The journal of geometric analysis}, number = {9}, publisher = {Springer}, address = {New York}, issn = {1050-6926}, doi = {10.1007/s12220-021-00614-3}, pages = {9199 -- 9240}, year = {2021}, abstract = {We establish a new approach of treating elliptic boundary value problems (BVPs) on manifolds with boundary and regular corners, up to singularity order 2. Ellipticity and parametrices are obtained in terms of symbols taking values in algebras of BVPs on manifolds of corresponding lower singularity orders. Those refer to Boutet de Monvel's calculus of operators with the transmission property, see Boutet de Monvel (Acta Math 126:11-51, 1971) for the case of smooth boundary. On corner configuration operators act in spaces with multiple weights. We mainly study the case of upper left entries in the respective 2 x 2 operator block-matrices of such a calculus. Green operators in the sense of Boutet de Monvel (Acta Math 126:11-51, 1971) analogously appear in singular cases, and they are complemented by contributions of Mellin type. We formulate a result on ellipticity and the Fredholm property in weighted corner spaces, with parametrices of analogous kind.}, language = {en} } @article{YenvonSpechtLinetal.2022, author = {Yen, Ming-Hsuan and von Specht, Sebastian and Lin, Yen-Yu and Cotton, Fabrice and Ma, Kuo-Fong}, title = {Within- and between-event variabilities of strong-velocity pulses of moderate earthquakes within dense seismic arrays}, series = {Bulletin of the Seismological Society of America}, volume = {112}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120200376}, pages = {361 -- 380}, year = {2022}, abstract = {Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (M-w 6-7) and characterize ground- motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the freq uency-wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.}, language = {en} } @article{RodriguezZuluagaStolleYamazakietal.2021, author = {Rodr{\´i}guez Zuluaga, Juan and Stolle, Claudia and Yamazaki, Yosuke and Xiong, Chao and England, Scott L.}, title = {A synoptic-scale wavelike structure in the nighttime equatorial ionization anomaly}, series = {Earth and Space Science : ESS}, volume = {8}, journal = {Earth and Space Science : ESS}, number = {2}, publisher = {American Geophysical Union}, address = {Malden, Mass.}, issn = {2333-5084}, doi = {10.1029/2020EA001529}, pages = {10}, year = {2021}, abstract = {Both ground- and satellite-based airglow imaging have significantly contributed to understanding the low-latitude ionosphere, especially the morphology and dynamics of the equatorial ionization anomaly (EIA). The NASA Global-scale Observations of the Limb and Disk (GOLD) mission focuses on far-ultraviolet airglow images from a geostationary orbit at 47.5 degrees W. This region is of particular interest at low magnetic latitudes because of the high magnetic declination (i.e., about -20 degrees) and proximity of the South Atlantic magnetic anomaly. In this study, we characterize an exciting feature of the nighttime EIA using GOLD observations from October 5, 2018 to June 30, 2020. It consists of a wavelike structure of a few thousand kilometers seen as poleward and equatorward displacements of the EIA-crests. Initial analyses show that the synoptic-scale structure is symmetric about the dip equator and appears nearly stationary with time over the night. In quasi-dipole coordinates, maxima poleward displacements of the EIA-crests are seen at about +/- 12 degrees latitude and around 20 and 60 degrees longitude (i.e., in geographic longitude at the dip equator, about 53 degrees W and 14 degrees W). The wavelike structure presents typical zonal wavelengths of about 6.7 x 10(3) km and 3.3 x 10(3) km. The structure's occurrence and wavelength are highly variable on a day-to-day basis with no apparent dependence on geomagnetic activity. In addition, a cluster or quasi-periodic wave train of equatorial plasma depletions (EPDs) is often detected within the synoptic-scale structure. We further outline the difference in observing these EPDs from FUV images and in situ measurements during a GOLD and Swarm mission conjunction.}, language = {en} } @inproceedings{DemarisGrišićHuisingaetal.2020, author = {D{\´e}maris, Alise and Grišić, Ana-Marija and Huisinga, Wilhelm and Walter, Reinisch and Kloft, Charlotte}, title = {Evaluation of dosing strategies of anti-TNF alpha monoclonal antibodies using pharmacokinetic modelling and simulation}, series = {Journal of Crohn's and Colitis}, volume = {14}, booktitle = {Journal of Crohn's and Colitis}, number = {Supp. 1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1873-9946}, doi = {10.1093/ecco-jcc/jjz203.201}, pages = {S171 -- S172}, year = {2020}, abstract = {Background: Anti-TNFα monoclonal antibodies (mAbs) are a well-established treatment for patients with Crohn's disease (CD). However, subtherapeutic concentrations of mAbs have been related to a loss of response during the first year of therapy1. Therefore, an appropriate dosing strategy is crucial to prevent the underexposure of mAbs for those patients. The aim of our study was to assess the impact of different dosing strategies (fixed dose or body size descriptor adapted) on drug exposure and the target concentration attainment for two different anti-TNFα mAbs: infliximab (IFX, body weight (BW)-based dosing) and certolizumab pegol (CZP, fixed dosing). For this purpose, a comprehensive pharmacokinetic (PK) simulation study was performed. Methods: A virtual population of 1000 clinically representative CD patients was generated based on the distribution of CD patient characteristics from an in-house clinical database (n = 116). Seven dosing regimens were investigated: fixed dose and per BW, lean BW (LBW), body surface area, height, body mass index and fat-free mass. The individual body size-adjusted doses were calculated from patient generated body size descriptor values. Then, using published PK models for IFX and CZP in CD patients2,3, for each patient, 1000 concentration-time profiles were simulated to consider the typical profile of a specific patient as well as the range of possible individual profiles due to unexplained PK variability across patients. For each dosing strategy, the variability in maximum and minimum mAb concentrations (Cmax and Cmin, respectively), area under the concentration-time curve (AUC) and the per cent of patients reaching target concentration were assessed during maintenance therapy. Results: For IFX and CZP, Cmin showed the highest variability between patients (CV ≈110\% and CV ≈80\%, respectively) with a similar extent across all dosing strategies. For IFX, the per cent of patients reaching the target (Cmin = 5 µg/ml) was similar across all dosing strategies (~15\%). For CZP, the per cent of patients reaching the target average concentration of 17 µg/ml ranged substantially (52-71\%), being the highest for LBW-adjusted dosing. Conclusion: By using a PK simulation approach, different dosing regimen of IFX and CZP revealed the highest variability for Cmin, the most commonly used PK parameter guiding treatment decisions, independent upon dosing regimen. Our results demonstrate similar target attainment with fixed dosing of IFX compared with currently recommended BW-based dosing. For CZP, the current fixed dosing strategy leads to comparable percentage of patients reaching target as the best performing body size-adjusted dosing (66\% vs. 71\%, respectively).}, language = {en} } @article{EshghiMachReichel2021, author = {Eshghi, Nasim and Mach, Thomas and Reichel, Lothar}, title = {New matrix function approximations and quadrature rules based on the Arnoldi process}, series = {Journal of computational and applied mathematics}, volume = {391}, journal = {Journal of computational and applied mathematics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0377-0427}, doi = {10.1016/j.cam.2021.113442}, pages = {12}, year = {2021}, abstract = {The Arnoldi process can be applied to inexpensively approximate matrix functions of the form f (A)v and matrix functionals of the form v*(f (A))*g(A)v, where A is a large square non-Hermitian matrix, v is a vector, and the superscript * denotes transposition and complex conjugation. Here f and g are analytic functions that are defined in suitable regions in the complex plane. This paper reviews available approximation methods and describes new ones that provide higher accuracy for essentially the same computational effort by exploiting available, but generally not used, moment information. Numerical experiments show that in some cases the modifications of the Arnoldi decompositions proposed can improve the accuracy of v*(f (A))*g(A)v about as much as performing an additional step of the Arnoldi process.}, language = {en} } @article{PohleAdamBeumer2022, author = {Pohle, Jennifer and Adam, Timo and Beumer, Larissa}, title = {Flexible estimation of the state dwell-time distribution in hidden semi-Markov models}, series = {Computational statistics \& data analysis}, volume = {172}, journal = {Computational statistics \& data analysis}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-9473}, doi = {10.1016/j.csda.2022.107479}, pages = {15}, year = {2022}, abstract = {Hidden semi-Markov models generalise hidden Markov models by explicitly modelling the time spent in a given state, the so-called dwell time, using some distribution defined on the natural numbers. While the (shifted) Poisson and negative binomial distribution provide natural choices for such distributions, in practice, parametric distributions can lack the flexibility to adequately model the dwell times. To overcome this problem, a penalised maximum likelihood approach is proposed that allows for a flexible and data-driven estimation of the dwell-time distributions without the need to make any distributional assumption. This approach is suitable for direct modelling purposes or as an exploratory tool to investigate the latent state dynamics. The feasibility and potential of the suggested approach is illustrated in a simulation study and by modelling muskox movements in northeast Greenland using GPS tracking data. The proposed method is implemented in the R-package PHSMM which is available on CRAN.}, language = {en} } @misc{KolbeEvans2020, author = {Kolbe, Benedikt Maximilian and Evans, Myfanwy E.}, title = {Isotopic tiling theory for hyperbolic surfaces}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54428}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544285}, pages = {30}, year = {2020}, abstract = {In this paper, we develop the mathematical tools needed to explore isotopy classes of tilings on hyperbolic surfaces of finite genus, possibly nonorientable, with boundary, and punctured. More specifically, we generalize results on Delaney-Dress combinatorial tiling theory using an extension of mapping class groups to orbifolds, in turn using this to study tilings of covering spaces of orbifolds. Moreover, we study finite subgroups of these mapping class groups. Our results can be used to extend the Delaney-Dress combinatorial encoding of a tiling to yield a finite symbol encoding the complexity of an isotopy class of tilings. The results of this paper provide the basis for a complete and unambiguous enumeration of isotopically distinct tilings of hyperbolic surfaces.}, language = {en} }