@article{HyoenaeHeikkilaeVainioetal.2021, author = {Hy{\"o}n{\"a}, Jukka and Heikkil{\"a}, Timo T. and Vainio, Seppo and Kliegl, Reinhold}, title = {Parafoveal access to word stem during reading}, series = {Cognition : international journal of cognitive science}, volume = {208}, journal = {Cognition : international journal of cognitive science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0010-0277}, doi = {10.1016/j.cognition.2020.104547}, pages = {13}, year = {2021}, abstract = {Previous studies (Hyona, Yan, \& Vainio, 2018; Yan et al., 2014) have demonstrated that in morphologically rich languages a word's morphological status is processed parafoveally to be used in modulating saccadic programming in reading. In the present parafoveal preview study conducted in Finnish, we examined the exact nature of this effect by comparing reading of morphologically complex words (a stem + two suffixes) to that of monomorphemic words. In the preview-change condition, the final 3-4 letters were replaced with other letters making the target word a pseudoword; for suffixed words, the word stem remained intact but the suffix information was unavailable; for monomorphemic words, only part of the stem was parafoveally available. Three alternative predictions were put forth. According to the first alternative, the morphological effect in initial fixation location is due to parafoveally perceiving the suffix as a highly frequent letter cluster and then adjusting the saccade program to land closer to the word beginning for suffixed than monomorphemic words. The second alternative, the processing difficulty hypothesis, assumes a morphological complexity effect: suffixed words are more complex than monomorphemic words. Therefore, the attentional window is narrower and the saccade is shorter. The third alternative posits that the effect reflects parafoveal access to the word's stem. The results for the initial fixation location and fixation durations were consistent with the parafoveal stem-access view.}, language = {en} } @article{HyonaYanVainio2018, author = {Hyona, Jukka and Yan, Ming and Vainio, Seppo}, title = {Morphological structure influences the initial landing position in words during reading Finnish}, series = {The quarterly journal of experimental psychology}, volume = {71}, journal = {The quarterly journal of experimental psychology}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1747-0218}, doi = {10.1080/17470218.2016.1267233}, pages = {122 -- 130}, year = {2018}, abstract = {The preferred viewing location in words [Rayner, K. (1979). Eye guidance in reading: Fixation locations within words. Perception, 8, 21-30] during reading is near the word centre. Parafoveal word length information is utilized to guide the eyes toward it. A recent study by Yan and colleagues [Yan, M., Zhou, W., Shu, H., Yusupu, R., Miao, D., Kr{\"u}gel, A., \& Kliegl, R. (2014). Eye movements guided by morphological structure: Evidence from the Uighur language. Cognition, 132, 181-215] demonstrated that the word's morphological structure may also be used in saccadic targeting. The study was conducted in a morphologically rich language, Uighur. The present study aimed at replicating their main findings in another morphologically rich language, Finnish. Similarly to Yan et al., it was found that the initial fixation landed closer to the word beginning for morphologically complex than for monomorphemic words. Word frequency, saccade launch site, and word length were also found to influence the initial landing position. It is concluded that in addition to low-level factors (word length and saccade launch site), also higher level factors related to the word's morphological structure and frequency may be utilized in saccade programming during reading.}, language = {en} } @article{GoebelMcCrinkFischeretal.2018, author = {G{\"o}bel, Silke M. and McCrink, Koleen and Fischer, Martin H. and Shaki, Samuel}, title = {Observation of directional storybook reading influences young children's counting direction}, series = {Journal of experimental child psychology}, volume = {166}, journal = {Journal of experimental child psychology}, publisher = {Elsevier}, address = {New York}, issn = {0022-0965}, doi = {10.1016/j.jecp.2017.08.001}, pages = {49 -- 66}, year = {2018}, abstract = {Even before formal schooling, children map numbers onto space in a directional manner. The origin of this preliterate spatial-numerical association is still debated. We investigated the role of enculturation for shaping the directionality of the association between numbers and space, focusing on counting behavior in 3- to 5-year-old preliterate children. Two studies provide evidence that, after observing reading from storybooks (left-to-right or right-to-left reading) children change their counting direction in line with the direction of observed reading. Just observing visuospatial directional movements had no such effect on counting direction. Complementarily, we document that book illustrations, prevalent in children's cultures, exhibit directionality that conforms to the direction of a culture's written language. We propose that shared book reading activates spatiotemporal representations of order in young children, which in turn affect their spatial representation of numbers.}, language = {en} } @article{LaurinavichyuteSekerinaAlexeevaetal.2019, author = {Laurinavichyute, Anna and Sekerina, Irina A. and Alexeeva, Svetlana and Bagdasaryan, Kristine and Kliegl, Reinhold}, title = {Russian Sentence Corpus: Benchmark measures of eye movements in reading in Russian}, series = {Behavior research methods : a journal of the Psychonomic Society}, volume = {51}, journal = {Behavior research methods : a journal of the Psychonomic Society}, number = {3}, publisher = {Springer}, address = {New York}, issn = {1554-351X}, doi = {10.3758/s13428-018-1051-6}, pages = {1161 -- 1178}, year = {2019}, abstract = {This article introduces a new corpus of eye movements in silent readingthe Russian Sentence Corpus (RSC). Russian uses the Cyrillic script, which has not yet been investigated in cross-linguistic eye movement research. As in every language studied so far, we confirmed the expected effects of low-level parameters, such as word length, frequency, and predictability, on the eye movements of skilled Russian readers. These findings allow us to add Slavic languages using Cyrillic script (exemplified by Russian) to the growing number of languages with different orthographies, ranging from the Roman-based European languages to logographic Asian ones, whose basic eye movement benchmarks conform to the universal comparative science of reading (Share, 2008). We additionally report basic descriptive corpus statistics and three exploratory investigations of the effects of Russian morphology on the basic eye movement measures, which illustrate the kinds of questions that researchers can answer using the RSC. The annotated corpus is freely available from its project page at the Open Science Framework: https://osf.io/x5q2r/.}, language = {en} } @article{YanPanChangetal.2019, author = {Yan, Ming and Pan, Jinger and Chang, Wenshuo and Kliegl, Reinhold}, title = {Read sideways or not: vertical saccade advantage in sentence reading}, series = {Reading and writing : an interdisciplinary journal}, volume = {32}, journal = {Reading and writing : an interdisciplinary journal}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {0922-4777}, doi = {10.1007/s11145-018-9930-x}, pages = {1911 -- 1926}, year = {2019}, abstract = {During the reading of alphabetic scripts and scene perception, eye movements are programmed more efficiently in horizontal direction than in vertical direction. We propose that such a directional advantage may be due the overwhelming reading experience in the horizontal direction. Writing orientation is highly flexible for Traditional Chinese sentences. We compare horizontal and vertical eye movements during reading of such sentences and provide first evidence of a text-orientation effect on eye-movement control during reading. In addition to equivalent reading speed in both directions, more fine-grained analyses demonstrate a tradeoff between longer fixation durations and better fixation locations in vertical than in horizontal reading. Our results suggest that with extensive reading experience, Traditional Chinese readers can generate saccades more efficiently in vertical than in horizontal direction.}, language = {en} } @phdthesis{Chandra2020, author = {Chandra, Johan}, title = {The role of the oculomotor control in eye movements during reading}, doi = {10.25932/publishup-47593}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475930}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 115}, year = {2020}, abstract = {Most reading theories assume that readers aim at word centers for optimal information processing. During reading, saccade targeting turns out to be imprecise: Saccades' initial landing positions often miss the word centers and have high variance, with an additional systematic error that is modulated by the distance from the launch site to the center of the target word. The performance of the oculomotor system, as reflected in the statistics of within-word landing positions, turns out to be very robust and mostly affected by the spatial information during reading. Hence, it is assumed that the saccade generation is highly automated. The main goal of this thesis is to explore the performance of the oculomotor system under various reading conditions where orthographic information and the reading direction were manipulated. Additionally, the challenges in understanding the eye movement data to represent the oculomotor process during reading are addressed. Two experimental studies and one simulation study were conducted for this thesis, which resulted in the following main findings: (i) Reading texts with orthographic manipulations leads to specific changes in the eye movement patterns, both in temporal and spatial measures. The findings indicate that the oculomotor control of eye movements during reading is dependent on reading conditions (Chapter 2 \& 3). (ii) Saccades' accuracy and precision can be simultaneously modulated under reversed reading condition, supporting the assumption that the random and systematic oculomotor errors are not independent. By assuming that readers increase the precision of sensory observation while maintaining the learned prior knowledge when reading direction was reversed, a process-oriented Bayesian model for saccade targeting can account for the simultaneous reduction of oculomotor errors (Chapter 2). (iii) Plausible parameter values serving as proxies for the intended within-word landing positions can be estimated by using the maximum a posteriori estimator from Bayesian inference. Using the mean value of all observations as proxies is insufficient for studies focusing on the launch-site effect because the method exhibits the strongest bias when estimating the size of the effect. Mislocated fixations remain a challenge for the currently known estimation methods, especially when the systematic oculomotor error is large (Chapter 4). The results reported in this thesis highlight the role of the oculomotor system, together with underlying cognitive processes, in eye movements during reading. The modulation of oculomotor control can be captured through a precise analysis of landing positions.}, language = {en} } @misc{HohensteinMatuschekKliegl2017, author = {Hohenstein, Sven and Matuschek, Hannes and Kliegl, Reinhold}, title = {Linked linear mixed models: A joint analysis of fixation locations and fixation durations in natural reading}, series = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, volume = {24}, journal = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-016-1138-y}, pages = {637 -- 651}, year = {2017}, abstract = {The complexity of eye-movement control during reading allows measurement of many dependent variables, the most prominent ones being fixation durations and their locations in words. In current practice, either variable may serve as dependent variable or covariate for the other in linear mixed models (LMMs) featuring also psycholinguistic covariates of word recognition and sentence comprehension. Rather than analyzing fixation location and duration with separate LMMs, we propose linking the two according to their sequential dependency. Specifically, we include predicted fixation location (estimated in the first LMM from psycholinguistic covariates) and its associated residual fixation location as covariates in the second, fixation-duration LMM. This linked LMM affords a distinction between direct and indirect effects (mediated through fixation location) of psycholinguistic covariates on fixation durations. Results confirm the robustness of distributed processing in the perceptual span. They also offer a resolution of the paradox of the inverted optimal viewing position (IOVP) effect (i.e., longer fixation durations in the center than at the beginning and end of words) although the opposite (i.e., an OVP effect) is predicted from default assumptions of psycholinguistic processing efficiency: The IOVP effect in fixation durations is due to the residual fixation-location covariate, presumably driven primarily by saccadic error, and the OVP effect (at least the left part of it) is uncovered with the predicted fixation-location covariate, capturing the indirect effects of psycholinguistic covariates. We expect that linked LMMs will be useful for the analysis of other dynamically related multiple outcomes, a conundrum of most psychonomic research.}, language = {en} } @article{Yan2015, author = {Yan, Ming}, title = {Visually complex foveal words increase the amount of parafoveal information acquired}, series = {Vision research : an international journal for functional aspects of vision.}, volume = {111}, journal = {Vision research : an international journal for functional aspects of vision.}, publisher = {Elsevier}, address = {Oxford}, issn = {0042-6989}, doi = {10.1016/j.visres.2015.03.025}, pages = {91 -- 96}, year = {2015}, abstract = {This study investigates the effect of foveal load (i.e., processing difficulty of currently fixated words) on parafoveal information processing. Contrary to the commonly accepted view that high foveal load leads to reduced parafoveal processing efficiency, results of the present study showed that increasing foveal visual (but not linguistic) processing load actually increased the amount of parafoveal information acquired, presumably due to the fact that longer fixation duration on the pretarget word provided more time for parafoveal processing of the target word. It is therefore proposed in the present study that foveal linguistic processing load is not the only factor that determines parafoveal processing; preview time (afforded by foveal word visual processing load) may jointly influence parafoveal processing. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchadRisseSlatteryetal.2014, author = {Schad, Daniel and Risse, Sarah and Slattery, Timothy and Rayner, Keith}, title = {Word frequency in fast priming: Evidence for immediate cognitive control of eye movements during reading}, series = {Visual cognition}, volume = {22}, journal = {Visual cognition}, number = {3-4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1350-6285}, doi = {10.1080/13506285.2014.892041}, pages = {390 -- 414}, year = {2014}, abstract = {Numerous studies have demonstrated effects of word frequency on eye movements during reading, but the precise timing of this influence has remained unclear. The fast priming paradigm was previously used to study influences of related versus unrelated primes on the target word. Here, we use this procedure to investigate whether the frequency of the prime word has a direct influence on eye movements during reading when the prime-target relation is not manipulated. We found that with average prime intervals of 32 ms readers made longer single fixation durations on the target word in the low than in the high frequency prime condition. Distributional analyses demonstrated that the effect of prime frequency on single fixation durations occurred very early, supporting theories of immediate cognitive control of eye movements. Finding prime frequency effects only 207 ms after visibility of the prime and for prime durations of 32 ms yields new time constraints for cognitive processes controlling eye movements during reading. Our variant of the fast priming paradigm provides a new approach to test early influences of word processing on eye movement control during reading.}, language = {en} } @article{RisseHohensteinKliegletal.2014, author = {Risse, Sarah and Hohenstein, Sven and Kliegl, Reinhold and Engbert, Ralf}, title = {A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm}, series = {Visual cognition}, volume = {22}, journal = {Visual cognition}, number = {3-4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1350-6285}, doi = {10.1080/13506285.2014.881444}, pages = {283 -- 308}, year = {2014}, abstract = {Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words.}, language = {en} }