@phdthesis{Ziese2014, author = {Ziese, Ramona}, title = {Geometric electroelasticity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72504}, school = {Universit{\"a}t Potsdam}, pages = {vi, 113}, year = {2014}, abstract = {In this work a diffential geometric formulation of the theory of electroelasticity is developed which also includes thermal and magnetic influences. We study the motion of bodies consisting of an elastic material that are deformed by the influence of mechanical forces, heat and an external electromagnetic field. To this end physical balance laws (conservation of mass, balance of momentum, angular momentum and energy) are established. These provide an equation that describes the motion of the body during the deformation. Here the body and the surrounding space are modeled as Riemannian manifolds, and we allow that the body has a lower dimension than the surrounding space. In this way one is not (as usual) restricted to the description of the deformation of three-dimensional bodies in a three-dimensional space, but one can also describe the deformation of membranes and the deformation in a curved space. Moreover, we formulate so-called constitutive relations that encode the properties of the used material. Balance of energy as a scalar law can easily be formulated on a Riemannian manifold. The remaining balance laws are then obtained by demanding that balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space. This generalizes a result by Marsden and Hughes that pertains to bodies that have the same dimension as the surrounding space and does not allow the presence of electromagnetic fields. Usually, in works on electroelasticity the entropy inequality is used to decide which otherwise allowed deformations are physically admissible and which are not. It is alsoemployed to derive restrictions to the possible forms of constitutive relations describing the material. Unfortunately, the opinions on the physically correct statement of the entropy inequality diverge when electromagnetic fields are present. Moreover, it is unclear how to formulate the entropy inequality in the case of a membrane that is subjected to an electromagnetic field. Thus, we show that one can replace the use of the entropy inequality by the demand that for a given process balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space and under linear rescalings of the temperature. On the one hand, this demand also yields the desired restrictions to the form of the constitutive relations. On the other hand, it needs much weaker assumptions than the arguments in physics literature that are employing the entropy inequality. Again, our result generalizes a theorem of Marsden and Hughes. This time, our result is, like theirs, only valid for bodies that have the same dimension as the surrounding space.}, language = {en} } @phdthesis{Baczyński2009, author = {Baczyński, Krzysztof Konrad}, title = {Buckling instabilities of semiflexible filaments in biological systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37927}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {In dieser Arbeit werden Knickinstabilit{\"a}ten von Filamenten in biologischen Systemen untersucht. Das Zytoskelett von Zellen ist aus solchen Filamenten aufgebaut. Sie sind f{\"u}r die mechanische Stabilit{\"a}t der Zelle verantwortlich und spielen eine große Rolle bei intrazellul{\"a}ren Transportprozessen durch molekulare Motoren, die verschiedene Lasten wie beispielsweise Organellen entlang der Filamente des Zytoskeletts transportieren. Filamente sind semiflexible Polymere, deren Biegeenergie {\"a}hnlich groß ist wie die thermische Energie, so dass sie auch als elastische Balken auf der Nanoskala gesehen werden k{\"o}nnen, die signifikante thermische Fluktuationen zeigen. Wie ein makroskopischer elastischer Balken k{\"o}nnen auch Filamente eine mechanische Knickinstabilit{\"a}t unter Kompression zeigen. Im ersten Teil dieser Arbeit wird untersucht, wie diese Instabilit{\"a}t durch thermische Fluktuationen der Filamente beeinflusst wird. In Zellen k{\"o}nnen Kompressionskr{\"a}fte durch molekulare Motoren erzeugt werden. Das geschieht zum Beispiel w{\"a}hrend der Zellteilung in der mitotischen Spindel. Im zweiten Teil der Arbeit untersuchen wir, wie die stochastische Natur einer von Motoren generierten Kraft die Knickinstabilit{\"a}t von Filamenten beeinflusst. Zun{\"a}chst stellen wir kurz das Problem von Knickinstabilit{\"a}ten auf der makroskopischen Skala dar und f{\"u}hren ein Modell f{\"u}r das Knicken von Filamenten oder elastischen St{\"a}ben in zwei Raumdimensionen und in Anwesenheit thermischer Fluktuationen ein. Wir pr{\"a}sentieren eine analytische L{\"o}sung f{\"u}r Knickinstabilit{\"a}ten in Anwesenheit thermischer Fluktuationen, die auf einer Renormierungsgruppenrechnung im Rahmen des nichtlinearen Sigma-Models basiert. Wir integrieren die kurzwelligen Fluktuationen aus, um eine effektive Theorie f{\"u}r die langwelligen Moden zu erhalten, die die Knickinstabilit{\"a}t bestimmen. Wir berechnen die {\"A}nderung der kritischen Kraft f{\"u}r die Knickinstabilit{\"a}t und zeigen, dass die thermischen Fluktuationen in zwei Raumdimensionen zu einer Zunahme der kritischen Kraft f{\"u}hren. Außerdem zeigen wir, dass thermische Fluktuationen im geknickten Zustand zu einer Zunahme der mittleren projizierten L{\"a}nge des Filaments in Richtung der wirkenden Kraft f{\"u}hren. Als Funktion der Konturl{\"a}nge des Filaments besitzt die mittlere projizierte L{\"a}nge eine Spitze an der Knickinstabilit{\"a}t, die durch thermische Fluktuationen abgerundet wird. Unser Hauptresultat ist die Beobachtung, dass ein geknicktes Filament unter dem Einfluss thermischer Fluktuationen gestreckt wird, d.h. dass seine mittlere projizierte L{\"a}nge in Richtung der Kompressionskraft auf Grund der thermischen Fluktuationen zunimmt. Unsere analytischen Resultate werden durch Monte-Carlo Simulationen der Knickinstabilit{\"a}t semiflexibler Filamente in zwei Raumdimensionen best{\"a}tigt. Wir f{\"u}hren auch Monte-Carlo Simulationen in h{\"o}heren Raumdimensionen durch und zeigen, dass die Zunahme der projizierten L{\"a}nge unter dem Einfluss thermischer Fluktuationen weniger ausgepr{\"a}gt ist und stark von der Wahl der Randbedingungen abh{\"a}ngt. Im zweiten Teil der Arbeit formulieren wir ein Modell f{\"u}r die Knickinstabilit{\"a}t semiflexibler Filamente unter dem Einfluss molekularer Motoren. Wir untersuchen ein System, in dem sich eine Gruppe von Motoren entlang eines fixierten Filaments bewegt, und dabei ein zweites Filament als Last tr{\"a}gt. Das Last-Filament wird gegen eine Wand gedr{\"u}ckt und knickt. W{\"a}hrend des Knickvorgangs k{\"o}nnen die Motoren, die die Kraft auf das Filament generieren, stochastisch von dem Filament ab- und an das Filament anbinden. Wir formulieren ein stochastisches Model f{\"u}r dieses System und berechnen die "mean first passage time", d.h. die mittlere Zeit f{\"u}r den {\"U}bergang von einem Zustand, in dem alle Motoren gebundenen sind zu einem Zustand, in dem alle Motoren abgebunden sind. Dieser {\"U}bergang entspricht auch einem {\"U}bergang aus dem gebogenen zur{\"u}ck in einen ungebogenen Zustand des Last-Filaments. Unser Resultat zeigt, dass f{\"u}r gen{\"u}gend kurze Mikrotubuli die Bewegung der Motoren von der durch das Last-Filament generierten Kraft beeinflusst wird. Diese Ergebnisse k{\"o}nnen in zuk{\"u}nftigen Experimenten {\"u}berpr{\"u}ft werden.}, language = {en} }